Geographic and polar plots¶

ProPlot includes features for working with polar axes and the cartopy and basemap geographic projection packages. These features are optional. Installation of cartopy or basemap is not required.

To change the axes projection, pass proj='name' to subplots. To use different projections for different subplots, pass a dictionary of projection names with the subplot number as the key – for example, proj={1: 'name'}. The default projection is always CartesianAxes (it can be explicitly specified with proj='cartesian').

Polar axes¶

To draw polar axes, pass proj='polar' or e.g. proj={1: 'polar'} to subplots. This generates a proplot.axes.PolarAxes instance with its own format method.

The proplot.axes.PolarAxes.format method facilitates polar-specific axes modifications like changing the central radius r0, the zero azimuth location theta0, and the positive azimuthal direction thetadir. It also supports changing gridline locations with rlocator and thetalocator (analogous to ylocator and xlocator used by format) and turning your polar plot into an “annular” or “sector” plot by changing the radial limits rlim or the azimuthal limits thetalim. Finally, since proplot.axes.PolarAxes.format calls proplot.axes.Axes.format, it can be used to add axes titles, a-b-c labels, and figure titles, just like CartesianAxes.

For details, see proplot.axes.PolarAxes.format.

[1]:

import proplot as pplt
import numpy as np
N = 200
state = np.random.RandomState(51423)
x = np.linspace(0, 2 * np.pi, N)
y = 100 * (state.rand(N, 5) - 0.3).cumsum(axis=0) / N
fig, axs = pplt.subplots([[1, 1, 2, 2], [0, 3, 3, 0]], proj='polar')
axs.format(
suptitle='Polar axes demo', linewidth=1, titlepad='1em',
ticklabelsize=9, rlines=0.5, rlim=(0, 19),
)
for i in range(5):
xi = x + i * 2 * np.pi / 5
axs.plot(xi, y[:, i], cycle='FlatUI', zorder=0, lw=3)

# Standard polar plot
axs[0].format(
title='Normal plot', thetaformatter='tau',
rlabelpos=225, rlines=pplt.arange(5, 30, 5),
)

# Sector plot
axs[1].format(
title='Sector plot', thetadir=-1, thetalines=90, thetalim=(0, 270), theta0='N',
rlim=(0, 22), rlines=pplt.arange(5, 30, 5),
)

# Annular plot
axs[2].format(
title='Annular plot', thetadir=-1, thetalines=20, gridcolor='red',
r0=-20, rlim=(0, 22), rformatter='null', rlocator=2
)


Geographic axes¶

ProPlot can create geographic projection axes using either cartopy or basemap as “backends”. To draw geographic axes, pass proj='name' or e.g. proj={2: 'name'} (see above) to subplots where name is any valid PROJ projection name. You can also use proj=projection_instance, where projection_instance is a cartopy.crs.Projection or mpl_toolkits.basemap.Basemap returned by the Proj constructor function.

When you request a geographic projection, subplots returns a proplot.axes.GeoAxes instance with its own format method. The proplot.axes.GeoAxes.format method lets you modify geographic features with the same syntax for either backend. A few details:

Together, these features let you work with geophysical data without invoking verbose cartopy classes like LambertAzimuthalEqualArea and NaturalEarthFeature or keeping track of separate Basemap instances. They considerably reduce the amount of code needed to make geographic plots. In the below examples, we create a variety of geographic plots using both cartopy and basemap as backends.

Note

• By default, ProPlot gives circular boundaries to polar cartopy projections like NorthPolarStereo (see this example from the cartopy website). This is consistent with basemap’s default behavior. To disable this feature, set rc[‘cartopy.circular’] to False. Please note that cartopy cannot add gridline labels to polar plots with circular boundaries.

• By default, ProPlot uses set_global to give non-polar cartopy projections global extent and bounds polar cartopy projections at the equator. This is a deviation from cartopy, which determines map boundaries automatically based on the coordinates of the plotted content. To revert to cartopy’s default behavior, set rc[‘cartopy.autoextent’] to True.

• To make things more consistent between cartopy and basemap, the Proj constructor function lets you supply native PROJ keyword names for the cartopy Projection classes (e.g., lon_0 instead of central_longitude) and instantiates Basemap projections with sensible default PROJ parameters rather than raising an error when they are omitted (e.g., lon_0=0 as the default for most projections).

Warning

Basemap is no longer maintained and will not work with matplotlib versions more recent than 3.2.2. However, as shown below, gridline labels tend to look nicer in basemap than in cartopy – especially when “inline” cartopy labels are disabled. This is the main reason ProPlot continues to support both basemap and cartopy. When cartopy’s gridline labels improve, basemap support may be deprecated.

[2]:

# Simple figure with just one projection

# Option 1: Create a projection manually with pplt.Proj()
# immport proplot as plot
# proj = pplt.Proj('robin', lon_0=180)
# fig, axs = pplt.subplots(nrows=2, refwidth=3, proj=proj)

# Option 2: Pass the name to 'proj' and keyword arguments to 'proj_kw'
import proplot as pplt
fig, axs = pplt.subplots(nrows=2, refwidth=3, proj='robin', proj_kw={'lon_0': 180})
axs.format(
suptitle='Figure with single projection',
coast=True, latlines=30, lonlines=60,
)

/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.7.0/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/110m/physical/ne_110m_coastline.zip

[3]:

# Complex figure with different projections
import proplot as pplt
fig, axs = pplt.subplots(
ncols=2, nrows=3,
hratios=(1, 1, 1.4),
basemap=(False, True, False, True, False, True),  # cartopy column 1
proj=('cyl', 'cyl', 'hammer', 'hammer', 'npstere', 'npstere'),
)
axs.format(
suptitle='Figure with several projections',
toplabels=('Cartopy projections', 'Basemap projections'),
toplabelweight='normal',
coast=True, latlines=20, lonlines=30,
lonlabels='b', latlabels='r',  # or lonlabels=True, labels=True, etc.
)
axs[0, :].format(latlines=30, lonlines=60, labels=True)
pplt.rc.reset()

Warning: Cannot label meridians on Hammer basemap


Geographic plotting¶

In ProPlot, plotting with GeoAxes is not much different from plotting with CartesianAxes. ProPlot makes longitude-latitude (i.e., Plate Carrée) coordinates the default coordinate system by passing transform=ccrs.PlateCarree() to cartopy plotting commands and latlon=True to basemap plotting commands. And again, basemap plotting commands are invoked from the proplot.axes.GeoAxes rather than the Basemap instance – just like cartopy. When using basemap as the “backend”, you should not have to work with the Basemap instance directly.

To ensure the graphics generated by 2D plotting commands like contour fill the entire globe, simply pass globe=True to the plotting command. This interpolates your data to the poles and across the longitude seam before plotting the data. This is a convenient alternative to cartopy’s add_cyclic_point and basemap’s addcyclic.

Geographic features can be drawn underneath data or on top of data by changing the corresponding zorder setting. For example, to draw land patches on top of all plotted content as a “land mask,” use ax.format(land=True, landzorder=4) or set rc[‘land.zorder’] to True. See the next section for details.

[4]:

import proplot as pplt
import numpy as np

# Fake data with unusual longitude seam location and without coverage over poles
offset = -40
lon = pplt.arange(offset, 360 + offset - 1, 60)
lat = pplt.arange(-60, 60 + 1, 30)
state = np.random.RandomState(51423)
data = state.rand(len(lat), len(lon))

# Plot data both without and with globe=True
for globe in (False, True):
string = 'with' if globe else 'without'
fig, axs = pplt.subplots(
ncols=2, nrows=2, refwidth=2.5,
proj='kav7', basemap={(1, 3): False, (2, 4): True}
)
axs.format(
suptitle=f'Geophysical data {string} global coverage',
toplabels=('Cartopy example', 'Basemap example'),
leftlabels=('Contourf', 'Pcolormesh'),
toplabelweight='normal', leftlabelweight='normal',
abc=True, abcstyle='a)', abcloc='ul', abcborder=False,
coast=True, lonlines=90,
)
for i, ax in enumerate(axs):
cmap = ('sunset', 'sunrise')[i % 2]
if i < 2:
m = ax.contourf(lon, lat, data, cmap=cmap, globe=globe, extend='both')
fig.colorbar(m, loc='b', span=i + 1, label='values', extendsize='1.7em')
else:
ax.pcolor(lon, lat, data, cmap=cmap, globe=globe, extend='both')


Formatting projections¶

The proplot.axes.GeoAxes.format method facilitates geographic-specific axes modifications. It can be used to configure “major” and “minor” longitude and latitude gridline locations using lonlocator, latlocator, lonminorlocator, and latminorlocator or configure gridline label formatting with lonformatter and latformatter (analogous to xlocator, xminorlocator, and xformatter used by proplot.axes.CartesianAxes.format). It can also set cartopy projection bounds with lonlim and latlim, set circular polar projection bounds with boundinglat, and toggle and configure geographic features like land masses, coastlines, and administrative borders using settings like land and landcolor. Finally, since proplot.axes.GeoAxes.format calls proplot.axes.Axes.format, it can be used to add axes titles, a-b-c labels, and figure titles, just like CartesianAxes.

For details, see the proplot.axes.GeoAxes.format documentation.

[5]:

import proplot as pplt
fig, axs = pplt.subplots(
[[1, 1, 2], [3, 3, 3]],
refwidth=4, proj={1: 'eqearth', 2: 'ortho', 3: 'wintri'},
wratios=(1, 1, 1.2), hratios=(1, 1.2),
)
axs.format(
suptitle='Projection axes formatting demo',
toplabels=('Column 1', 'Column 2'),
abc=True, abcstyle='A.', abcloc='ul', abcborder=False, linewidth=1.5
)

# Styling projections in different ways
ax = axs[0]
ax.format(
title='Equal earth', land=True, landcolor='navy', facecolor='pale blue',
coastcolor='gray5', borderscolor='gray5', innerborderscolor='gray5',
gridlinewidth=1.5, gridcolor='gray5', gridalpha=0.5,
gridminor=True, gridminorlinewidth=0.5,
coast=True, borders=True, borderslinewidth=0.8,
)
ax = axs[1]
ax.format(
title='Orthographic', reso='med', land=True, coast=True, latlines=10, lonlines=15,
landcolor='mushroom', suptitle='Projection axes formatting demo',
facecolor='petrol', coastcolor='charcoal', coastlinewidth=0.8, gridlinewidth=1
)
ax = axs[2]
ax.format(
land=True, facecolor='ocean blue', landcolor='bisque', title='Winkel tripel',
lonlines=60, latlines=15,
gridlinewidth=0.8, gridminor=True, gridminorlinestyle=':',
lonlabels=True, latlabels='r', loninline=True,
gridlabelcolor='gray8', gridlabelsize='med-large',
)

/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.7.0/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/110m/physical/ne_110m_land.zip


Zooming into projections¶

To zoom into cartopy projections, use set_extent or pass lonlim, latlim, or boundinglat to format. The boundinglat keyword controls the circular latitude boundary for North Polar and South Polar Stereographic, Azimuthal Equidistant, Lambert Azimuthal Equal-Area, and Gnomonic projections. By default, ProPlot tries to use the degree-minute-second cartopy locators and formatters made available in cartopy 0.18. You can switch from minute-second subintervals to traditional decimal subintervals by passing dms=False to format or by setting rc[‘grid.dmslabels’] to False.

To zoom into basemap projections, pass any of the boundinglat, llcrnrlon, llcrnrlat, urcrnrlon, urcrnrlat, llcrnrx, llcrnry, urcrnrx, urcrnry, width, or height keyword arguments to the Proj constructor function either directly or via the proj_kw subplots keyword argument. You can also pass lonlim and latlim to Proj and these arguments will be used for llcrnrlon, llcrnrlat, etc. You cannot zoom into basemap projections with format after they have already been created.

[6]:

import proplot as pplt

# Plate Carrée map projection
pplt.rc.reso = 'med'  # use higher res for zoomed in geographic features
proj = pplt.Proj('cyl', lonlim=(-20, 180), latlim=(-10, 50), basemap=True)
fig, axs = pplt.subplots(nrows=2, refwidth=5, proj=('cyl', proj))
axs.format(
land=True, labels=True, lonlines=20, latlines=20,
gridminor=True, suptitle='Zooming into projections'
)
axs[0].format(
lonlim=(-140, 60), latlim=(-10, 50),
labels=True, title='Cartopy example'
)
axs[1].format(title='Basemap example')

[7]:

import proplot as pplt

# Pole-centered map projections
proj = pplt.Proj('npaeqd', boundinglat=60, basemap=True)
fig, axs = pplt.subplots(ncols=2, refwidth=2.7, proj=('splaea', proj))
axs.format(
land=True, latmax=80,  # no gridlines poleward of 80 degrees
suptitle='Zooming into polar projections'
)
axs[0].format(boundinglat=-60, title='Cartopy example')
axs[1].format(title='Basemap example')

[8]:

import proplot as pplt

# Zooming in on continents
proj1 = pplt.Proj('lcc', lon_0=0)  # cartopy projection
proj2 = pplt.Proj('lcc', lon_0=-100, lat_0=45, width=8e6, height=8e6, basemap=True)
fig, axs = pplt.subplots(ncols=2, refwidth=3, proj=(proj1, proj2))
axs.format(suptitle='Zooming into specific regions', land=True)
axs[0].format(lonlim=(-20, 50), latlim=(30, 70), title='Cartopy example')
axs[1].format(lonlines=20, title='Basemap example')

[9]:

import proplot as pplt

# Zooming to very small scale with degree-minute-second labels
pplt.rc.reso = 'hi'
fig, axs = pplt.subplots(ncols=2, refwidth=2.5, proj='cyl')
axs.format(
land=True, labels=True,
borders=True, borderscolor='white',
suptitle='Degree-minute-second labels',
)
axs[0].format(lonlim=(-7.5, 2), latlim=(49.5, 59))
axs[1].format(lonlim=(-6, -2), latlim=(54.5, 58.5))
pplt.rc.reset()

/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.7.0/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/10m/physical/ne_10m_land.zip


Included projections¶

The available cartopy and basemap projections are plotted below. See Proj for a table of projection names with links to the relevant PROJ documentation.

ProPlot uses the cartopy API to add the Aitoff, Hammer, Winkel Tripel, and Kavrisky VII projections (i.e., 'aitoff', 'hammer', 'wintri', and 'kav7'), as well as North and South polar versions of the Azimuthal Equidistant, Lambert Azimuthal Equal-Area, and Gnomic projections (i.e., 'npaeqd', 'spaeqd', 'nplaea', 'splaea', 'npgnom', and 'spgnom'), modeled after the existing NorthPolarStereo and SouthPolarStereo projections.

[10]:

import proplot as pplt

# Table of cartopy projections
projs = [
'cyl', 'merc', 'mill', 'lcyl', 'tmerc',
'robin', 'hammer', 'moll', 'kav7', 'aitoff', 'wintri', 'sinu',
'geos', 'ortho', 'nsper', 'aea', 'eqdc', 'lcc', 'gnom',
'npstere', 'nplaea', 'npaeqd', 'npgnom', 'igh',
'eck1', 'eck2', 'eck3', 'eck4', 'eck5', 'eck6'
]
fig, axs = pplt.subplots(ncols=3, nrows=10, figwidth=7, proj=projs)
axs.format(
land=True, reso='lo', labels=False,
suptitle='Table of cartopy projections'
)
for proj, ax in zip(projs, axs):
ax.format(title=proj, titleweight='bold', labels=False)

/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.7.0/lib/python3.8/site-packages/proplot/constructor.py:1522: UserWarning: The default value for the *approx* keyword argument to TransverseMercator will change from True to False after 0.18.
proj = crs(**kwproj)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.7.0/lib/python3.8/site-packages/cartopy/mpl/feature_artist.py:154: UserWarning: Unable to determine extent. Defaulting to global.
warnings.warn('Unable to determine extent. Defaulting to global.')

[11]:

import proplot as pplt

# Table of basemap projections
projs = [
'cyl', 'merc', 'mill', 'cea', 'gall', 'sinu',
'eck4', 'robin', 'moll', 'kav7', 'hammer', 'mbtfpq',
'geos', 'ortho', 'nsper',
'vandg', 'aea', 'eqdc', 'gnom', 'cass', 'lcc',
'npstere', 'npaeqd', 'nplaea'
]
fig, axs = pplt.subplots(ncols=3, nrows=8, basemap=True, figwidth=7, proj=projs)
axs.format(
land=True, labels=False,
suptitle='Table of basemap projections'
)
for proj, ax in zip(projs, axs):
ax.format(title=proj, titleweight='bold', labels=False)