PlotAxes¶
- class PlotAxes(*args, **kwargs)[source]¶
Bases:
proplot.axes.base.Axes
The second lowest-level
Axes
subclass used by proplot. Implements all plotting overrides.- Parameters
*args, **kwargs – Passed to
Axes
.
See also
matplotlib.axes.Axes
,proplot.axes.Axes
,proplot.axes.CartesianAxes
,proplot.axes.PolarAxes
,proplot.axes.GeoAxes
Methods Summary
area
(*args, **kwargs)Plot individual, grouped, or overlaid shading patches.
areax
(*args, **kwargs)Plot individual, grouped, or overlaid shading patches.
bar
(*args, **kwargs)Plot individual, grouped, or stacked bars.
barbs
(x, y, u, v, c, **kwargs)Plot wind barbs.
barh
(*args, **kwargs)Plot individual, grouped, or stacked bars.
box
(*args, **kwargs)Plot vertical boxes and whiskers with a nice default style.
boxes
(*[, new_obj, message])boxh
(*args, **kwargs)Plot horizontal boxes and whiskers with a nice default style.
boxplot
(*args, **kwargs)Plot vertical boxes and whiskers with a nice default style.
boxploth
(*args, **kwargs)Plot horizontal boxes and whiskers with a nice default style.
contour
(x, y, z, **kwargs)Plot contour lines.
contourf
(x, y, z, **kwargs)Plot filled contours.
fill_between
(*args, **kwargs)Plot individual, grouped, or overlaid shading patches.
fill_betweenx
(*args, **kwargs)Plot individual, grouped, or overlaid shading patches.
heatmap
(*args[, aspect])Plot grid boxes with formatting suitable for heatmaps.
hexbin
(x, y, weights, **kwargs)Plot a 2D hexagonally binned histogram.
hist
(*args, **kwargs)Plot vertical histograms.
hist2d
(x, y, bins, **kwargs)Plot a standard 2D histogram.
histh
(*args, **kwargs)Plot horizontal histograms.
hlines
(*args, **kwargs)Plot horizontal lines.
imshow
(z, **kwargs)Plot an image.
line
(*args, **kwargs)Plot standard lines.
linex
(*args, **kwargs)Plot standard lines.
matshow
(z, **kwargs)Plot a matrix.
parametric
(x, y, c, *[, interp, scalex, scaley])Plot a parametric line.
pcolor
(x, y, z, **kwargs)Plot irregular grid boxes.
pcolorfast
(x, y, z, **kwargs)Plot grid boxes quickly.
pcolormesh
(x, y, z, **kwargs)Plot regular grid boxes.
pie
(x, explode, *[, labelpad, labeldistance])Plot a pie chart.
plot
(*args, **kwargs)Plot standard lines.
plotx
(*args, **kwargs)Plot standard lines.
quiver
(x, y, u, v, c, **kwargs)Plot quiver arrows.
scatter
(*args, **kwargs)Plot markers with flexible keyword arguments.
scatterx
(*args, **kwargs)Plot markers with flexible keyword arguments.
set_prop_cycle
(*args, **kwargs)Set the property cycle of the Axes.
spy
(z, **kwargs)Plot a sparcity pattern.
stem
(*args, **kwargs)Plot stem lines.
stemx
(*args, **kwargs)Plot stem lines.
step
(*args, **kwargs)Plot step lines.
stepx
(*args, **kwargs)Plot step lines.
stream
(*args, **kwargs)Plot streamlines.
streamplot
(x, y, u, v, c, **kwargs)Plot streamlines.
tricontour
(x, y, z, **kwargs)Plot contour lines on a triangular grid.
tricontourf
(x, y, z, **kwargs)Plot filled contours on a triangular grid.
tripcolor
(x, y, z, **kwargs)Plot triangular grid boxes.
violin
(*args, **kwargs)Plot vertical violins with a nice default style matching this matplotlib example.
violinh
(*args, **kwargs)Plot horizontal violins with a nice default style matching this matplotlib example.
violinplot
(*args, **kwargs)Plot vertical violins with a nice default style matching this matplotlib example.
violinploth
(*args, **kwargs)Plot horizontal violins with a nice default style matching this matplotlib example.
violins
(*[, new_obj, message])vlines
(*args, **kwargs)Plot vertical lines.
Methods Documentation
- area(*args, **kwargs)[source]¶
Plot individual, grouped, or overlaid shading patches.
- Parameters
*args (
y2
orx
,y2
, orx
,y1
,y2
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y2.shape[0])
.If only
x
andy2
coordinates are passed, set they1
coordinates to zero. This draws elements originating from the zero line.If both
y1
andy2
are provided, draw elements between these points. If either are 2D, draw elements by iterating over each column.If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
stack, stacked (
bool
, optional) – Whether to “stack” area patches from successive columns of y data or plot area patches on top of each other. Default isFalse
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
where (
ndarray
, optional) – A boolean mask for the points that should be shaded. See this matplotlib example.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.negpos (
bool
, optional) – Whether to shade patches wherey2 >= y1
withposcolor
and wherey2 < y1
withnegcolor
. Default isFalse
. IfTrue
this function will return a 2-tuple of values.negcolor, poscolor (
color-spec
, optional) – Colors to use for the negative and positive patches. Ignored ifnegpos
isFalse
. Defaults arerc.negcolor
='blue7'
andrc.poscolor
='red7'
.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
fill_between
.
- areax(*args, **kwargs)[source]¶
Plot individual, grouped, or overlaid shading patches.
- Parameters
*args (
x2
ory
,x2
, ory
,x1
,x2
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x2.shape[0])
.If only
y
andx2
coordinates are passed, set thex1
coordinates to zero. This draws elements originating from the zero line.If both
x1
andx2
are provided, draw elements between these points. If either are 2D, draw elements by iterating over each column.If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
stack, stacked (
bool
, optional) – Whether to “stack” area patches from successive columns of x data or plot area patches on top of each other. Default isFalse
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
where (
ndarray
, optional) – A boolean mask for the points that should be shaded. See this matplotlib example.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.negpos (
bool
, optional) – Whether to shade patches wherey2 >= y1
withposcolor
and wherey2 < y1
withnegcolor
. Default isFalse
. IfTrue
this function will return a 2-tuple of values.negcolor, poscolor (
color-spec
, optional) – Colors to use for the negative and positive patches. Ignored ifnegpos
isFalse
. Defaults arerc.negcolor
='blue7'
andrc.poscolor
='red7'
.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
fill_betweenx
.
- bar(*args, **kwargs)[source]¶
Plot individual, grouped, or stacked bars.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
width (
float
or array-like, optional) – The width(s) of the bars relative to the x coordinate step size. Can be passed as a third positional argument.bottom (
float
or array-like, optional) – The coordinate(s) of the bottom edge of the bars. Default is0
. Can be passed as a fourth positinal argument.absolute_width (
bool
, optional) – Whether to make thewidth
units absolute. IfTrue
, this restores the default matplotlib behavior. Default isFalse
.stack, stacked (
bool
, optional) – Whether to “stack” bars from successive columns of y data or plot bars side-by-side in groups. Default isFalse
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.negpos (
bool
, optional) – Whether to shade bars whereheight >= 0
withposcolor
and whereheight < 0
withnegcolor
. Default isFalse
. IfTrue
this function will return a 2-tuple of values.negcolor, poscolor (
color-spec
, optional) – Colors to use for the negative and positive bars. Ignored ifnegpos
isFalse
. Defaults arerc.negcolor
='blue7'
andrc.poscolor
='red7'
.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.mean, means (
bool
, optional) – Whether to plot the means of each column for 2Dy
coordinates. Means are calculated withnumpy.nanmean
. If no other arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).median, medians (
bool
, optional) – Whether to plot the medians of each column for 2Dy
coordinates. Medians are calculated withnumpy.nanmedian
. If no other arguments arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).barstd, barstds (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. Standard deviation multiples for thin error bars with optional whiskers (i.e., caps). If scalar, then +/- that multiple is used. IfTrue
, the default standard deviation range of +/-3 is used.barpctile, barpctiles (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. As withbarstd
, but instead using percentiles for the error bars. If scalar, that percentile range is used (e.g.,90
shows the 5th to 95th percentiles). IfTrue
, the default percentile range of 0 to 100 is used.bardata (array-like, optional) – Valid only if
mean
andmedian
areFalse
. If shape is 2 x N, these are the lower and upper bounds for the thin error bars. If shape is N, these are the absolute, symmetric deviations from the central points.boxstd, boxstds, boxpctile, boxpctiles, boxdata (optional) – As with
barstd
,barpctile
, andbardata
, but for thicker error bars representing a smaller interval than the thin error bars. Ifboxstds
isTrue
, the default standard deviation range of +/-1 is used. Ifboxpctiles
isTrue
, the default percentile range of 25 to 75 is used (i.e., the interquartile range). When “boxes” and “bars” are combined, this has the effect of drawing miniature box-and-whisker plots.capsize (
float
, optional) – The cap size for thin error bars in points. Default isrc['errorbar.capsize']
=3.0
.barz, barzorder, boxz, boxzorder (
float
, optional) – The “zorder” for the thin and thick error bars. Default is2.5
.barc, barcolor, boxc, boxcolor (
color-spec
, optional) – Colors for the thin and thick error bars. Default isrc['boxplot.whiskerprops.color']
='black'
.barlw, barlinewidth, boxlw, boxlinewidth (
float
, optional) – Line widths for the thin and thick error bars, in points. The defaultsrc['boxplot.whiskerprops.linewidth']
=1.0
(bars) and four times that value (boxes).boxm, boxmarker (
bool
ormarker-spec
, optional) – Whether to draw a small marker in the middle of the box denoting the mean or median position. Ignored ifboxes
isFalse
. Default is'o'
.boxms, boxmarkersize (
size-spec
, optional) – The marker size for theboxmarker
marker in points ** 2. Default size is equal to(2 * boxlinewidth) ** 2
.boxmc, boxmarkercolor, boxmec, boxmarkeredgecolor (
color-spec
, optional) – Color, face color, and edge color for theboxmarker
marker. Default color and edge color are'w'
.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
bar
.
- barbs(x, y, u, v, c, **kwargs)[source]¶
Plot wind barbs.
- Parameters
*args (
u
,v
orx
,y
,u
,v
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
u
andv
coordinates are passed, try to infer thex
andy
coordinates from theDataFrame
indices and columns or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, y.shape[0])
and thex
coordinates arenp.arange(0, y.shape[1])
.For
pcolor
andpcolormesh
, calculate coordinate edges usingedges
oredges2d
if centers were provided. For all other methods, calculate coordinate centers if edges were provided.If the
x
ory
coordinates arepint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. If theu
andv
coordinates arepint.Quantity
, pass the magnitude to the plotting command. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
c, color, colors (array-like or
color-spec
, optional) – The colors of the wind barbs passed as either a keyword argument or a fifth positional argument. This can be a single color or a color array to be scaled bycmap
andnorm
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.transpose (
bool
, optional) – Whether to transpose the input data. This should be used when passing datasets with column-major dimension order(x, y)
. Otherwise row-major dimension order(y, x)
is expected.order (
{{'C', 'F'}}
, optional) – Alternative totranspose
.'C'
corresponds to the default C-cyle row-major ordering (equivalent totranspose=False
).'F'
corresponds to Fortran-style column-major ordering (equivalent totranspose=True
).globe (
bool
, optional) – Forproplot.axes.GeoAxes
only. Whether to enforce global coverage. Default isFalse
. When set toTrue
this does the following:Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole.
Makes meridional coverage “circular”, i.e. the last longitude coordinate equals the first longitude coordinate plus 360°.
When basemap is the backend, cycles 1D longitude vectors to fit within the map edges. For example, if the central longitude is 90°, the data is shifted so that it spans -90° to 270°.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.**kwargs – Passed to
matplotlib.axes.Axes.barbs
- barh(*args, **kwargs)[source]¶
Plot individual, grouped, or stacked bars.
- Parameters
*args (
x
ory
,x
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x.shape[0])
.If the
x
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
width (
float
or array-like, optional) – The width(s) of the bars relative to the y coordinate step size. Can be passed as a third positional argument.left (
float
or array-like, optional) – The coordinate(s) of the left edge of the bars. Default is0
. Can be passed as a fourth positinal argument.absolute_width (
bool
, optional) – Whether to make thewidth
units absolute. IfTrue
, this restores the default matplotlib behavior. Default isFalse
.stack, stacked (
bool
, optional) – Whether to “stack” bars from successive columns of x data or plot bars side-by-side in groups. Default isFalse
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.negpos (
bool
, optional) – Whether to shade bars whereheight >= 0
withposcolor
and whereheight < 0
withnegcolor
. Default isFalse
. IfTrue
this function will return a 2-tuple of values.negcolor, poscolor (
color-spec
, optional) – Colors to use for the negative and positive bars. Ignored ifnegpos
isFalse
. Defaults arerc.negcolor
='blue7'
andrc.poscolor
='red7'
.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.mean, means (
bool
, optional) – Whether to plot the means of each column for 2Dx
coordinates. Means are calculated withnumpy.nanmean
. If no other arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).median, medians (
bool
, optional) – Whether to plot the medians of each column for 2Dx
coordinates. Medians are calculated withnumpy.nanmedian
. If no other arguments arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).barstd, barstds (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. Standard deviation multiples for thin error bars with optional whiskers (i.e., caps). If scalar, then +/- that multiple is used. IfTrue
, the default standard deviation range of +/-3 is used.barpctile, barpctiles (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. As withbarstd
, but instead using percentiles for the error bars. If scalar, that percentile range is used (e.g.,90
shows the 5th to 95th percentiles). IfTrue
, the default percentile range of 0 to 100 is used.bardata (array-like, optional) – Valid only if
mean
andmedian
areFalse
. If shape is 2 x N, these are the lower and upper bounds for the thin error bars. If shape is N, these are the absolute, symmetric deviations from the central points.boxstd, boxstds, boxpctile, boxpctiles, boxdata (optional) – As with
barstd
,barpctile
, andbardata
, but for thicker error bars representing a smaller interval than the thin error bars. Ifboxstds
isTrue
, the default standard deviation range of +/-1 is used. Ifboxpctiles
isTrue
, the default percentile range of 25 to 75 is used (i.e., the interquartile range). When “boxes” and “bars” are combined, this has the effect of drawing miniature box-and-whisker plots.capsize (
float
, optional) – The cap size for thin error bars in points. Default isrc['errorbar.capsize']
=3.0
.barz, barzorder, boxz, boxzorder (
float
, optional) – The “zorder” for the thin and thick error bars. Default is2.5
.barc, barcolor, boxc, boxcolor (
color-spec
, optional) – Colors for the thin and thick error bars. Default isrc['boxplot.whiskerprops.color']
='black'
.barlw, barlinewidth, boxlw, boxlinewidth (
float
, optional) – Line widths for the thin and thick error bars, in points. The defaultsrc['boxplot.whiskerprops.linewidth']
=1.0
(bars) and four times that value (boxes).boxm, boxmarker (
bool
ormarker-spec
, optional) – Whether to draw a small marker in the middle of the box denoting the mean or median position. Ignored ifboxes
isFalse
. Default is'o'
.boxms, boxmarkersize (
size-spec
, optional) – The marker size for theboxmarker
marker in points ** 2. Default size is equal to(2 * boxlinewidth) ** 2
.boxmc, boxmarkercolor, boxmec, boxmarkeredgecolor (
color-spec
, optional) – Color, face color, and edge color for theboxmarker
marker. Default color and edge color are'w'
.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
barh
.
- box(*args, **kwargs)[source]¶
Plot vertical boxes and whiskers with a nice default style.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
fill (
bool
, optional) – Whether to fill the box with a color. Default isTrue
.mean, means (
bool
, optional) – IfTrue
, this passesshowmeans=True
andmeanline=True
toboxplot
.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the boxes. Default isrc['patch.linewidth']
=0.6
.c, color, colors, ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the boxes. Default is'black'
.fc, facecolor, fillcolor, facecolors, fillcolors (
color-spec
, optional) – The fill color for the boxes. Default is to use the propertycycle
.a, alpha, alphas (
float
, optional) – The opacity of the boxes. Default is1.0
.m, marker, ms, markersize (
float
orstr
, optional) – Marker style and size for the ‘fliers’, i.e. outliers. Default is determined byrc['boxplot.flierprops']
.meanls, medianls, meanlinestyle, medianlinestyle, meanlinestyles, medianlinestyles (
line style-spec
, optional) – The line style for the mean and median lines drawn horizontally across the box.boxc, capc, whiskerc, flierc, meanc, medianc, boxcolor, capcolor, whiskercolor, fliercolor, meancolor, mediancolor boxcolors, capcolors, whiskercolors, fliercolors, meancolors, mediancolors (
color-spec
or sequence, optional) – The color of various boxplot components. If a sequence, should be the same length as the number of boxes. These are shorthands so you don’t have to pass e.g. aboxprops
dictionary.boxlw, caplw, whiskerlw, flierlw, meanlw, medianlw, boxlinewidth, caplinewidth, meanlinewidth, medianlinewidth, whiskerlinewidth, flierlinewidth, boxlinewidths, caplinewidths, meanlinewidths, medianlinewidths, whiskerlinewidths, flierlinewidths (
float
, optional) – The line width of various boxplot components. These are shorthands so you don’t have to pass e.g. aboxprops
dictionary.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.**kwargs – Passed to
matplotlib.axes.Axes.boxplot
.
See also
PlotAxes.boxes
,PlotAxes.boxesh
,PlotAxes.boxplot
,PlotAxes.boxploth
,matplotlib.axes.Axes.boxplot
- boxes(*, new_obj=<function PlotAxes.box>, message="'boxes' was deprecated in version 0.8 and will be removed in a future release. Please use 'box' instead.", **kwargs)¶
- boxh(*args, **kwargs)[source]¶
Plot horizontal boxes and whiskers with a nice default style.
- Parameters
*args (
x
ory
,x
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x.shape[0])
.If the
x
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
fill (
bool
, optional) – Whether to fill the box with a color. Default isTrue
.mean, means (
bool
, optional) – IfTrue
, this passesshowmeans=True
andmeanline=True
toboxplot
.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the boxes. Default isrc['patch.linewidth']
=0.6
.c, color, colors, ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the boxes. Default is'black'
.fc, facecolor, fillcolor, facecolors, fillcolors (
color-spec
, optional) – The fill color for the boxes. Default is to use the propertycycle
.a, alpha, alphas (
float
, optional) – The opacity of the boxes. Default is1.0
.m, marker, ms, markersize (
float
orstr
, optional) – Marker style and size for the ‘fliers’, i.e. outliers. Default is determined byrc['boxplot.flierprops']
.meanls, medianls, meanlinestyle, medianlinestyle, meanlinestyles, medianlinestyles (
line style-spec
, optional) – The line style for the mean and median lines drawn horizontally across the box.boxc, capc, whiskerc, flierc, meanc, medianc, boxcolor, capcolor, whiskercolor, fliercolor, meancolor, mediancolor boxcolors, capcolors, whiskercolors, fliercolors, meancolors, mediancolors (
color-spec
or sequence, optional) – The color of various boxplot components. If a sequence, should be the same length as the number of boxes. These are shorthands so you don’t have to pass e.g. aboxprops
dictionary.boxlw, caplw, whiskerlw, flierlw, meanlw, medianlw, boxlinewidth, caplinewidth, meanlinewidth, medianlinewidth, whiskerlinewidth, flierlinewidth, boxlinewidths, caplinewidths, meanlinewidths, medianlinewidths, whiskerlinewidths, flierlinewidths (
float
, optional) – The line width of various boxplot components. These are shorthands so you don’t have to pass e.g. aboxprops
dictionary.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.**kwargs – Passed to
matplotlib.axes.Axes.boxplot
.
See also
PlotAxes.boxes
,PlotAxes.boxesh
,PlotAxes.boxplot
,PlotAxes.boxploth
,matplotlib.axes.Axes.boxplot
- boxplot(*args, **kwargs)[source]¶
Plot vertical boxes and whiskers with a nice default style.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
fill (
bool
, optional) – Whether to fill the box with a color. Default isTrue
.mean, means (
bool
, optional) – IfTrue
, this passesshowmeans=True
andmeanline=True
toboxplot
.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the boxes. Default isrc['patch.linewidth']
=0.6
.c, color, colors, ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the boxes. Default is'black'
.fc, facecolor, fillcolor, facecolors, fillcolors (
color-spec
, optional) – The fill color for the boxes. Default is to use the propertycycle
.a, alpha, alphas (
float
, optional) – The opacity of the boxes. Default is1.0
.m, marker, ms, markersize (
float
orstr
, optional) – Marker style and size for the ‘fliers’, i.e. outliers. Default is determined byrc['boxplot.flierprops']
.meanls, medianls, meanlinestyle, medianlinestyle, meanlinestyles, medianlinestyles (
line style-spec
, optional) – The line style for the mean and median lines drawn horizontally across the box.boxc, capc, whiskerc, flierc, meanc, medianc, boxcolor, capcolor, whiskercolor, fliercolor, meancolor, mediancolor boxcolors, capcolors, whiskercolors, fliercolors, meancolors, mediancolors (
color-spec
or sequence, optional) – The color of various boxplot components. If a sequence, should be the same length as the number of boxes. These are shorthands so you don’t have to pass e.g. aboxprops
dictionary.boxlw, caplw, whiskerlw, flierlw, meanlw, medianlw, boxlinewidth, caplinewidth, meanlinewidth, medianlinewidth, whiskerlinewidth, flierlinewidth, boxlinewidths, caplinewidths, meanlinewidths, medianlinewidths, whiskerlinewidths, flierlinewidths (
float
, optional) – The line width of various boxplot components. These are shorthands so you don’t have to pass e.g. aboxprops
dictionary.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.**kwargs – Passed to
matplotlib.axes.Axes.boxplot
.
See also
PlotAxes.boxes
,PlotAxes.boxesh
,PlotAxes.boxplot
,PlotAxes.boxploth
,matplotlib.axes.Axes.boxplot
- boxploth(*args, **kwargs)[source]¶
Plot horizontal boxes and whiskers with a nice default style.
- Parameters
*args (
x
ory
,x
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x.shape[0])
.If the
x
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
fill (
bool
, optional) – Whether to fill the box with a color. Default isTrue
.mean, means (
bool
, optional) – IfTrue
, this passesshowmeans=True
andmeanline=True
toboxplot
.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the boxes. Default isrc['patch.linewidth']
=0.6
.c, color, colors, ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the boxes. Default is'black'
.fc, facecolor, fillcolor, facecolors, fillcolors (
color-spec
, optional) – The fill color for the boxes. Default is to use the propertycycle
.a, alpha, alphas (
float
, optional) – The opacity of the boxes. Default is1.0
.m, marker, ms, markersize (
float
orstr
, optional) – Marker style and size for the ‘fliers’, i.e. outliers. Default is determined byrc['boxplot.flierprops']
.meanls, medianls, meanlinestyle, medianlinestyle, meanlinestyles, medianlinestyles (
line style-spec
, optional) – The line style for the mean and median lines drawn horizontally across the box.boxc, capc, whiskerc, flierc, meanc, medianc, boxcolor, capcolor, whiskercolor, fliercolor, meancolor, mediancolor boxcolors, capcolors, whiskercolors, fliercolors, meancolors, mediancolors (
color-spec
or sequence, optional) – The color of various boxplot components. If a sequence, should be the same length as the number of boxes. These are shorthands so you don’t have to pass e.g. aboxprops
dictionary.boxlw, caplw, whiskerlw, flierlw, meanlw, medianlw, boxlinewidth, caplinewidth, meanlinewidth, medianlinewidth, whiskerlinewidth, flierlinewidth, boxlinewidths, caplinewidths, meanlinewidths, medianlinewidths, whiskerlinewidths, flierlinewidths (
float
, optional) – The line width of various boxplot components. These are shorthands so you don’t have to pass e.g. aboxprops
dictionary.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.**kwargs – Passed to
matplotlib.axes.Axes.boxplot
.
See also
PlotAxes.boxes
,PlotAxes.boxesh
,PlotAxes.boxplot
,PlotAxes.boxploth
,matplotlib.axes.Axes.boxplot
- contour(x, y, z, **kwargs)[source]¶
Plot contour lines.
- Parameters
*args (
z
orx
,y
,z
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
z
coordinates are passed, try to infer thex
andy
coordinates from theDataFrame
indices and columns or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, y.shape[0])
and thex
coordinates arenp.arange(0, y.shape[1])
.For
pcolor
andpcolormesh
, calculate coordinate edges usingedges
oredges2d
if centers were provided. For all other methods, calculate coordinate centers if edges were provided.If the
x
ory
coordinates arepint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. If thez
coordinates arepint.Quantity
, pass the magnitude to the plotting command. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.transpose (
bool
, optional) – Whether to transpose the input data. This should be used when passing datasets with column-major dimension order(x, y)
. Otherwise row-major dimension order(y, x)
is expected.order (
{{'C', 'F'}}
, optional) – Alternative totranspose
.'C'
corresponds to the default C-cyle row-major ordering (equivalent totranspose=False
).'F'
corresponds to Fortran-style column-major ordering (equivalent totranspose=True
).globe (
bool
, optional) – Forproplot.axes.GeoAxes
only. Whether to enforce global coverage. Default isFalse
. When set toTrue
this does the following:Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole.
Makes meridional coverage “circular”, i.e. the last longitude coordinate equals the first longitude coordinate plus 360°.
When basemap is the backend, cycles 1D longitude vectors to fit within the map edges. For example, if the central longitude is 90°, the data is shifted so that it spans -90° to 270°.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.lw, linewidth, linewidths (
float
, optional) – The width of the contour lines. Forcontourf
plots, lines are added between the filled contours.ls, linestyle, linestyles (
str
, optional) – The style of the contour lines. Forcontourf
plots, lines are added between the filled contours.ec, edgecolor, edgecolors (
color-spec
, optional) – The color for the contour lines. Forcontourf
plots, lines are added between the filled contours.a, alpha, alpha (
float
, optional) – The opacity of the contours.labels (
bool
, optional) – Whether to apply labels to contours and grid boxes. The text will be white when the luminance of the underlying filled contour or grid box is less than 50 and black otherwise.labels_kw (dict-like, optional) – Ignored if
labels
isFalse
. Extra keyword args for the labels. For contour plots, this is passed toclabel
. Otherwise, this is passed totext
.fmt (
format-spec
, optional) – Passed to theNorm
constructor, used to format number labels. You can also use theprecision
keyword arg.precision (
int
, optional) – Maximum number of decimal places for the number labels. Number labels are generated with theSimpleFormatter
formatter, which permits limiting the precision.label (
str
, optional) – The legend label to be used for this object. In the case of contours, this is paired with the the central artist in the artist list returned bymatplotlib.contour.ContourSet.legend_elements
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
matplotlib.axes.Axes.contour
.
- contourf(x, y, z, **kwargs)[source]¶
Plot filled contours.
- Parameters
*args (
z
orx
,y
,z
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
z
coordinates are passed, try to infer thex
andy
coordinates from theDataFrame
indices and columns or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, y.shape[0])
and thex
coordinates arenp.arange(0, y.shape[1])
.For
pcolor
andpcolormesh
, calculate coordinate edges usingedges
oredges2d
if centers were provided. For all other methods, calculate coordinate centers if edges were provided.If the
x
ory
coordinates arepint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. If thez
coordinates arepint.Quantity
, pass the magnitude to the plotting command. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.transpose (
bool
, optional) – Whether to transpose the input data. This should be used when passing datasets with column-major dimension order(x, y)
. Otherwise row-major dimension order(y, x)
is expected.order (
{{'C', 'F'}}
, optional) – Alternative totranspose
.'C'
corresponds to the default C-cyle row-major ordering (equivalent totranspose=False
).'F'
corresponds to Fortran-style column-major ordering (equivalent totranspose=True
).globe (
bool
, optional) – Forproplot.axes.GeoAxes
only. Whether to enforce global coverage. Default isFalse
. When set toTrue
this does the following:Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole.
Makes meridional coverage “circular”, i.e. the last longitude coordinate equals the first longitude coordinate plus 360°.
When basemap is the backend, cycles 1D longitude vectors to fit within the map edges. For example, if the central longitude is 90°, the data is shifted so that it spans -90° to 270°.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.lw, linewidth, linewidths (
float
, optional) – The width of the contour lines. Forcontourf
plots, lines are added between the filled contours.ls, linestyle, linestyles (
str
, optional) – The style of the contour lines. Forcontourf
plots, lines are added between the filled contours.ec, edgecolor, edgecolors (
color-spec
, optional) – The color for the contour lines. Forcontourf
plots, lines are added between the filled contours.a, alpha, alpha (
float
, optional) – The opacity of the contours.edgefix : bool or float, optional Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.labels (
bool
, optional) – Whether to apply labels to contours and grid boxes. The text will be white when the luminance of the underlying filled contour or grid box is less than 50 and black otherwise.labels_kw (dict-like, optional) – Ignored if
labels
isFalse
. Extra keyword args for the labels. For contour plots, this is passed toclabel
. Otherwise, this is passed totext
.fmt (
format-spec
, optional) – Passed to theNorm
constructor, used to format number labels. You can also use theprecision
keyword arg.precision (
int
, optional) – Maximum number of decimal places for the number labels. Number labels are generated with theSimpleFormatter
formatter, which permits limiting the precision.label (
str
, optional) – The legend label to be used for this object. In the case of contours, this is paired with the the central artist in the artist list returned bymatplotlib.contour.ContourSet.legend_elements
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
matplotlib.axes.Axes.contourf
.
- fill_between(*args, **kwargs)[source]¶
Plot individual, grouped, or overlaid shading patches.
- Parameters
*args (
y2
orx
,y2
, orx
,y1
,y2
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y2.shape[0])
.If only
x
andy2
coordinates are passed, set they1
coordinates to zero. This draws elements originating from the zero line.If both
y1
andy2
are provided, draw elements between these points. If either are 2D, draw elements by iterating over each column.If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
stack, stacked (
bool
, optional) – Whether to “stack” area patches from successive columns of y data or plot area patches on top of each other. Default isFalse
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
where (
ndarray
, optional) – A boolean mask for the points that should be shaded. See this matplotlib example.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.negpos (
bool
, optional) – Whether to shade patches wherey2 >= y1
withposcolor
and wherey2 < y1
withnegcolor
. Default isFalse
. IfTrue
this function will return a 2-tuple of values.negcolor, poscolor (
color-spec
, optional) – Colors to use for the negative and positive patches. Ignored ifnegpos
isFalse
. Defaults arerc.negcolor
='blue7'
andrc.poscolor
='red7'
.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
fill_between
.
- fill_betweenx(*args, **kwargs)[source]¶
Plot individual, grouped, or overlaid shading patches.
- Parameters
*args (
x2
ory
,x2
, ory
,x1
,x2
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x2.shape[0])
.If only
y
andx2
coordinates are passed, set thex1
coordinates to zero. This draws elements originating from the zero line.If both
x1
andx2
are provided, draw elements between these points. If either are 2D, draw elements by iterating over each column.If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
stack, stacked (
bool
, optional) – Whether to “stack” area patches from successive columns of x data or plot area patches on top of each other. Default isFalse
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
where (
ndarray
, optional) – A boolean mask for the points that should be shaded. See this matplotlib example.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.negpos (
bool
, optional) – Whether to shade patches wherey2 >= y1
withposcolor
and wherey2 < y1
withnegcolor
. Default isFalse
. IfTrue
this function will return a 2-tuple of values.negcolor, poscolor (
color-spec
, optional) – Colors to use for the negative and positive patches. Ignored ifnegpos
isFalse
. Defaults arerc.negcolor
='blue7'
andrc.poscolor
='red7'
.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
fill_betweenx
.
- heatmap(*args, aspect=None, **kwargs)[source]¶
Plot grid boxes with formatting suitable for heatmaps. Ensures square grid boxes, adds major ticks to the center of each grid box, disables minor ticks and gridlines, and sets
rc['cmap.discrete']
toFalse
by default.- Parameters
*args (
z
orx
,y
,z
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
z
coordinates are passed, try to infer thex
andy
coordinates from theDataFrame
indices and columns or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, y.shape[0])
and thex
coordinates arenp.arange(0, y.shape[1])
.For
pcolor
andpcolormesh
, calculate coordinate edges usingedges
oredges2d
if centers were provided. For all other methods, calculate coordinate centers if edges were provided.If the
x
ory
coordinates arepint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. If thez
coordinates arepint.Quantity
, pass the magnitude to the plotting command. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.transpose (
bool
, optional) – Whether to transpose the input data. This should be used when passing datasets with column-major dimension order(x, y)
. Otherwise row-major dimension order(y, x)
is expected.order (
{{'C', 'F'}}
, optional) – Alternative totranspose
.'C'
corresponds to the default C-cyle row-major ordering (equivalent totranspose=False
).'F'
corresponds to Fortran-style column-major ordering (equivalent totranspose=True
).globe (
bool
, optional) – Forproplot.axes.GeoAxes
only. Whether to enforce global coverage. Default isFalse
. When set toTrue
this does the following:Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole.
Makes meridional coverage “circular”, i.e. the last longitude coordinate equals the first longitude coordinate plus 360°.
When basemap is the backend, cycles 1D longitude vectors to fit within the map edges. For example, if the central longitude is 90°, the data is shifted so that it spans -90° to 270°.
aspect (
{'equal', 'auto'}
orfloat
, optional) – Modify the axes aspect ratio. The aspect ratio is of particular relevance for heatmaps since it may lead to non-square grid boxes. This parameter is a shortcut for callingset_aspect
. Default isrc['image.aspect']
='equal'
. The options are as follows:Number: The data aspect ratio.
'equal'
: A data aspect ratio of 1.'auto'
: Allows the data aspect ratio to change depending on the layout. In general this results in non-square grid boxes.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.lw, linewidth, linewidths (
float
, optional) – The width of lines between grid boxes.ls, linestyle, linestyles (
str
, optional) – The style of lines between grid boxes.ec, edgecolor, edgecolors (
color-spec
, optional) – The color for lines between grid boxes.a, alpha, alphas (
float
, optional) – The opacity of the grid boxes.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.labels (
bool
, optional) – Whether to apply labels to contours and grid boxes. The text will be white when the luminance of the underlying filled contour or grid box is less than 50 and black otherwise.labels_kw (dict-like, optional) – Ignored if
labels
isFalse
. Extra keyword args for the labels. For contour plots, this is passed toclabel
. Otherwise, this is passed totext
.fmt (
format-spec
, optional) – Passed to theNorm
constructor, used to format number labels. You can also use theprecision
keyword arg.precision (
int
, optional) – Maximum number of decimal places for the number labels. Number labels are generated with theSimpleFormatter
formatter, which permits limiting the precision.label (
str
, optional) – The legend label to be used for this object. In the case of contours, this is paired with the the central artist in the artist list returned bymatplotlib.contour.ContourSet.legend_elements
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
matplotlib.axes.Axes.pcolormesh
.
- hexbin(x, y, weights, **kwargs)[source]¶
Plot a 2D hexagonally binned histogram. standard 2D histogram.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
weights (array-like, optional) – The weights associated with each point. If string this can be retrieved from
data
(see below).data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.labels (
bool
, optional) – Whether to apply labels to contours and grid boxes. The text will be white when the luminance of the underlying filled contour or grid box is less than 50 and black otherwise.labels_kw (dict-like, optional) – Ignored if
labels
isFalse
. Extra keyword args for the labels. For contour plots, this is passed toclabel
. Otherwise, this is passed totext
.fmt (
format-spec
, optional) – Passed to theNorm
constructor, used to format number labels. You can also use theprecision
keyword arg.precision (
int
, optional) – Maximum number of decimal places for the number labels. Number labels are generated with theSimpleFormatter
formatter, which permits limiting the precision.label (
str
, optional) – The legend label to be used for this object. In the case of contours, this is paired with the the central artist in the artist list returned bymatplotlib.contour.ContourSet.legend_elements
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
hexbin
.
- hist(*args, **kwargs)[source]¶
Plot vertical histograms.
- Parameters
*args (
x
ory
,x
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x.shape[0])
.If the
x
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
bins (
int
or sequence offloat
, optional) – The bin count or exact bin edges.weights (array-like, optional) – The weights associated with each point. If string this can be retrieved from
data
(see below).histtype (
{'bar', 'barstacked', 'step', 'stepfilled'}
, optional) – The histogram type. Seematplotlib.axes.Axes.hist
for details.width, rwidth (
float
, optional) – The bar width(s) for bar-type histograms relative to the bin size. Default is0.8
for multiple columns of unstacked data and1
otherwise.stack, stacked (
bool
, optional) – Whether to “stack” successive columns of x data for bar-type histograms or show side-by-side in groups. Setting this toFalse
is equivalent tohisttype='bar'
and toTrue
is equivalent tohisttype='barstacked'
.fill, filled (
bool
, optional) – Whether to “fill” step-type histograms or just plot the edges. Setting this toFalse
is equivalent tohisttype='step'
and toTrue
is equivalent tohisttype='stepfilled'
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
hist
.
See also
- hist2d(x, y, bins, **kwargs)[source]¶
Plot a standard 2D histogram. standard 2D histogram.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
bins (
int
or2-tuple
ofint
, or array-like or2-tuple
of array-like, optional) – The bin count or exact bin edges for each dimension or both dimensions.weights (array-like, optional) – The weights associated with each point. If string this can be retrieved from
data
(see below).data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.labels (
bool
, optional) – Whether to apply labels to contours and grid boxes. The text will be white when the luminance of the underlying filled contour or grid box is less than 50 and black otherwise.labels_kw (dict-like, optional) – Ignored if
labels
isFalse
. Extra keyword args for the labels. For contour plots, this is passed toclabel
. Otherwise, this is passed totext
.fmt (
format-spec
, optional) – Passed to theNorm
constructor, used to format number labels. You can also use theprecision
keyword arg.precision (
int
, optional) – Maximum number of decimal places for the number labels. Number labels are generated with theSimpleFormatter
formatter, which permits limiting the precision.label (
str
, optional) – The legend label to be used for this object. In the case of contours, this is paired with the the central artist in the artist list returned bymatplotlib.contour.ContourSet.legend_elements
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
hist2d
.
- histh(*args, **kwargs)[source]¶
Plot horizontal histograms.
- Parameters
*args (
x
ory
,x
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x.shape[0])
.If the
x
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
bins (
int
or sequence offloat
, optional) – The bin count or exact bin edges.weights (array-like, optional) – The weights associated with each point. If string this can be retrieved from
data
(see below).histtype (
{'bar', 'barstacked', 'step', 'stepfilled'}
, optional) – The histogram type. Seematplotlib.axes.Axes.hist
for details.width, rwidth (
float
, optional) – The bar width(s) for bar-type histograms relative to the bin size. Default is0.8
for multiple columns of unstacked data and1
otherwise.stack, stacked (
bool
, optional) – Whether to “stack” successive columns of x data for bar-type histograms or show side-by-side in groups. Setting this toFalse
is equivalent tohisttype='bar'
and toTrue
is equivalent tohisttype='barstacked'
.fill, filled (
bool
, optional) – Whether to “fill” step-type histograms or just plot the edges. Setting this toFalse
is equivalent tohisttype='step'
and toTrue
is equivalent tohisttype='stepfilled'
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
hist
.
See also
- hlines(*args, **kwargs)[source]¶
Plot horizontal lines.
- Parameters
*args (
x2
ory
,x2
, ory
,x1
,x2
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x2.shape[0])
.If only
y
andx2
coordinates are passed, set thex1
coordinates to zero. This draws elements originating from the zero line.If both
x1
andx2
are provided, draw elements between these points. If either are 2D, draw elements by iterating over each column.If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
stack, stacked (
bool
, optional) – Whether to “stack” lines from successive columns of x data or plot lines on top of each other. Default isFalse
.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The line width.ls, linestyle, linestyles (
str
, optional) – The line style.c, color, colors (
color-spec
, optional) – The line color.a, alpha, alphas (
float
, optional) – The opacity.negpos (
bool
, optional) – Whether to shade lines whereymax >= ymin
withposcolor
and whereymax < ymin
withnegcolor
. Default isFalse
. IfTrue
this function will return a 2-tuple of values.negcolor, poscolor (
color-spec
, optional) – Colors to use for the negative and positive lines. Ignored ifnegpos
isFalse
. Defaults arerc.negcolor
='blue7'
andrc.poscolor
='red7'
.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
hlines
.
- imshow(z, **kwargs)[source]¶
Plot an image.
- Parameters
z (array-like) – The data passed as a positional argument or keyword argument.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
matplotlib.axes.Axes.imshow
.
- line(*args, **kwargs)[source]¶
Plot standard lines.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The line width.ls, linestyle, linestyles (
str
, optional) – The line style.c, color, colors (
color-spec
, optional) – The line color.a, alpha, alphas (
float
, optional) – The opacity.mean, means (
bool
, optional) – Whether to plot the means of each column for 2Dy
coordinates. Means are calculated withnumpy.nanmean
. If no other arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).median, medians (
bool
, optional) – Whether to plot the medians of each column for 2Dy
coordinates. Medians are calculated withnumpy.nanmedian
. If no other arguments arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).barstd, barstds (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. Standard deviation multiples for thin error bars with optional whiskers (i.e., caps). If scalar, then +/- that multiple is used. IfTrue
, the default standard deviation range of +/-3 is used.barpctile, barpctiles (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. As withbarstd
, but instead using percentiles for the error bars. If scalar, that percentile range is used (e.g.,90
shows the 5th to 95th percentiles). IfTrue
, the default percentile range of 0 to 100 is used.bardata (array-like, optional) – Valid only if
mean
andmedian
areFalse
. If shape is 2 x N, these are the lower and upper bounds for the thin error bars. If shape is N, these are the absolute, symmetric deviations from the central points.boxstd, boxstds, boxpctile, boxpctiles, boxdata (optional) – As with
barstd
,barpctile
, andbardata
, but for thicker error bars representing a smaller interval than the thin error bars. Ifboxstds
isTrue
, the default standard deviation range of +/-1 is used. Ifboxpctiles
isTrue
, the default percentile range of 25 to 75 is used (i.e., the interquartile range). When “boxes” and “bars” are combined, this has the effect of drawing miniature box-and-whisker plots.capsize (
float
, optional) – The cap size for thin error bars in points. Default isrc['errorbar.capsize']
=3.0
.barz, barzorder, boxz, boxzorder (
float
, optional) – The “zorder” for the thin and thick error bars. Default is2.5
.barc, barcolor, boxc, boxcolor (
color-spec
, optional) – Colors for the thin and thick error bars. Default isrc['boxplot.whiskerprops.color']
='black'
.barlw, barlinewidth, boxlw, boxlinewidth (
float
, optional) – Line widths for the thin and thick error bars, in points. The defaultsrc['boxplot.whiskerprops.linewidth']
=1.0
(bars) and four times that value (boxes).boxm, boxmarker (
bool
ormarker-spec
, optional) – Whether to draw a small marker in the middle of the box denoting the mean or median position. Ignored ifboxes
isFalse
. Default is'o'
.boxms, boxmarkersize (
size-spec
, optional) – The marker size for theboxmarker
marker in points ** 2. Default size is equal to(2 * boxlinewidth) ** 2
.boxmc, boxmarkercolor, boxmec, boxmarkeredgecolor (
color-spec
, optional) – Color, face color, and edge color for theboxmarker
marker. Default color and edge color are'w'
.shadestd, shadestds, shadepctile, shadepctiles, shadedata (optional) – As with
barstd
,barpctile
, andbardata
, but using shading to indicate the error range. Ifshadestds
isTrue
, the default standard deviation range of +/-2 is used. Ifshadepctiles
isTrue
, the default percentile range of 10 to 90 is used.fadestd, fadestds, fadepctile, fadepctiles, fadedata (optional) – As with
shadestd
,shadepctile
, andshadedata
, but for an additional, more faded, secondary shaded region. Iffadestds
isTrue
, the default standard deviation range of +/-3 is used. Iffadepctiles
isTrue
, the default percentile range of 0 to 100 is used.shadec, shadecolor, fadec, fadecolor (
color-spec
, optional) – Colors for the different shaded regions. Default is to inherit the parent color.shadez, shadezorder, fadez, fadezorder (
float
, optional) – The “zorder” for the different shaded regions. Default is1.5
.shadea, shadealpha, fadea, fadealpha (
float
, optional) – The opacity for the different shaded regions. Defaults are0.4
and0.2
.shadelw, shadelinewidth, fadelw, fadelinewidth (
float
, optional) – The edge line width for the shading patches. Default isrc['patch.linewidth']
=0.6
.shdeec, shadeedgecolor, fadeec, fadeedgecolor (
float
, optional) – The edge color for the shading patches. Default is'none'
.shadelabel, fadelabel (
bool
orstr
, optional) – Labels for the shaded regions to be used as separate legend entries. To toggle labels “on” and apply a default label, use e.g.shadelabel=True
. To apply a custom label, use e.g.shadelabel='label'
. Otherwise, the shading is drawn underneath the line and/or marker in the legend entry.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
plot
.
See also
- linex(*args, **kwargs)[source]¶
Plot standard lines.
- Parameters
*args (
x
ory
,x
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x.shape[0])
.If the
x
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The line width.ls, linestyle, linestyles (
str
, optional) – The line style.c, color, colors (
color-spec
, optional) – The line color.a, alpha, alphas (
float
, optional) – The opacity.mean, means (
bool
, optional) – Whether to plot the means of each column for 2Dx
coordinates. Means are calculated withnumpy.nanmean
. If no other arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).median, medians (
bool
, optional) – Whether to plot the medians of each column for 2Dx
coordinates. Medians are calculated withnumpy.nanmedian
. If no other arguments arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).barstd, barstds (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. Standard deviation multiples for thin error bars with optional whiskers (i.e., caps). If scalar, then +/- that multiple is used. IfTrue
, the default standard deviation range of +/-3 is used.barpctile, barpctiles (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. As withbarstd
, but instead using percentiles for the error bars. If scalar, that percentile range is used (e.g.,90
shows the 5th to 95th percentiles). IfTrue
, the default percentile range of 0 to 100 is used.bardata (array-like, optional) – Valid only if
mean
andmedian
areFalse
. If shape is 2 x N, these are the lower and upper bounds for the thin error bars. If shape is N, these are the absolute, symmetric deviations from the central points.boxstd, boxstds, boxpctile, boxpctiles, boxdata (optional) – As with
barstd
,barpctile
, andbardata
, but for thicker error bars representing a smaller interval than the thin error bars. Ifboxstds
isTrue
, the default standard deviation range of +/-1 is used. Ifboxpctiles
isTrue
, the default percentile range of 25 to 75 is used (i.e., the interquartile range). When “boxes” and “bars” are combined, this has the effect of drawing miniature box-and-whisker plots.capsize (
float
, optional) – The cap size for thin error bars in points. Default isrc['errorbar.capsize']
=3.0
.barz, barzorder, boxz, boxzorder (
float
, optional) – The “zorder” for the thin and thick error bars. Default is2.5
.barc, barcolor, boxc, boxcolor (
color-spec
, optional) – Colors for the thin and thick error bars. Default isrc['boxplot.whiskerprops.color']
='black'
.barlw, barlinewidth, boxlw, boxlinewidth (
float
, optional) – Line widths for the thin and thick error bars, in points. The defaultsrc['boxplot.whiskerprops.linewidth']
=1.0
(bars) and four times that value (boxes).boxm, boxmarker (
bool
ormarker-spec
, optional) – Whether to draw a small marker in the middle of the box denoting the mean or median position. Ignored ifboxes
isFalse
. Default is'o'
.boxms, boxmarkersize (
size-spec
, optional) – The marker size for theboxmarker
marker in points ** 2. Default size is equal to(2 * boxlinewidth) ** 2
.boxmc, boxmarkercolor, boxmec, boxmarkeredgecolor (
color-spec
, optional) – Color, face color, and edge color for theboxmarker
marker. Default color and edge color are'w'
.shadestd, shadestds, shadepctile, shadepctiles, shadedata (optional) – As with
barstd
,barpctile
, andbardata
, but using shading to indicate the error range. Ifshadestds
isTrue
, the default standard deviation range of +/-2 is used. Ifshadepctiles
isTrue
, the default percentile range of 10 to 90 is used.fadestd, fadestds, fadepctile, fadepctiles, fadedata (optional) – As with
shadestd
,shadepctile
, andshadedata
, but for an additional, more faded, secondary shaded region. Iffadestds
isTrue
, the default standard deviation range of +/-3 is used. Iffadepctiles
isTrue
, the default percentile range of 0 to 100 is used.shadec, shadecolor, fadec, fadecolor (
color-spec
, optional) – Colors for the different shaded regions. Default is to inherit the parent color.shadez, shadezorder, fadez, fadezorder (
float
, optional) – The “zorder” for the different shaded regions. Default is1.5
.shadea, shadealpha, fadea, fadealpha (
float
, optional) – The opacity for the different shaded regions. Defaults are0.4
and0.2
.shadelw, shadelinewidth, fadelw, fadelinewidth (
float
, optional) – The edge line width for the shading patches. Default isrc['patch.linewidth']
=0.6
.shdeec, shadeedgecolor, fadeec, fadeedgecolor (
float
, optional) – The edge color for the shading patches. Default is'none'
.shadelabel, fadelabel (
bool
orstr
, optional) – Labels for the shaded regions to be used as separate legend entries. To toggle labels “on” and apply a default label, use e.g.shadelabel=True
. To apply a custom label, use e.g.shadelabel='label'
. Otherwise, the shading is drawn underneath the line and/or marker in the legend entry.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
plot
.
See also
- matshow(z, **kwargs)[source]¶
Plot a matrix.
- Parameters
z (array-like) – The data passed as a positional argument or keyword argument.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
matplotlib.axes.Axes.matshow
.
- parametric(x, y, c, *, interp=0, scalex=True, scaley=True, **kwargs)[source]¶
Plot a parametric line.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
c, color, colors, values (array-like, optional) – The parametric coordinate. These can be passed as a third positional argument or as a keyword argument. They can also be string labels instead of numbers and the resulting colorbar ticks will be labeled accordingly.
interp (
int
, optional) – Interpolate to this many additional points between the parametric coordinates. Default is0
. This can be increased to make the color gradations between a small number of coordinates appear “smooth”.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.scalex, scaley (
bool
, optional) – Whether the view limits are adapted to the data limits. The values are passed on toautoscale_view
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Valid
LineCollection
properties.
- Returns
LineCollection
– The parametric line. See this matplotlib example.
- pcolor(x, y, z, **kwargs)[source]¶
Plot irregular grid boxes.
- Parameters
*args (
z
orx
,y
,z
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
z
coordinates are passed, try to infer thex
andy
coordinates from theDataFrame
indices and columns or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, y.shape[0])
and thex
coordinates arenp.arange(0, y.shape[1])
.For
pcolor
andpcolormesh
, calculate coordinate edges usingedges
oredges2d
if centers were provided. For all other methods, calculate coordinate centers if edges were provided.If the
x
ory
coordinates arepint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. If thez
coordinates arepint.Quantity
, pass the magnitude to the plotting command. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.transpose (
bool
, optional) – Whether to transpose the input data. This should be used when passing datasets with column-major dimension order(x, y)
. Otherwise row-major dimension order(y, x)
is expected.order (
{{'C', 'F'}}
, optional) – Alternative totranspose
.'C'
corresponds to the default C-cyle row-major ordering (equivalent totranspose=False
).'F'
corresponds to Fortran-style column-major ordering (equivalent totranspose=True
).globe (
bool
, optional) – Forproplot.axes.GeoAxes
only. Whether to enforce global coverage. Default isFalse
. When set toTrue
this does the following:Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole.
Makes meridional coverage “circular”, i.e. the last longitude coordinate equals the first longitude coordinate plus 360°.
When basemap is the backend, cycles 1D longitude vectors to fit within the map edges. For example, if the central longitude is 90°, the data is shifted so that it spans -90° to 270°.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.lw, linewidth, linewidths (
float
, optional) – The width of lines between grid boxes.ls, linestyle, linestyles (
str
, optional) – The style of lines between grid boxes.ec, edgecolor, edgecolors (
color-spec
, optional) – The color for lines between grid boxes.a, alpha, alphas (
float
, optional) – The opacity of the grid boxes.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.labels (
bool
, optional) – Whether to apply labels to contours and grid boxes. The text will be white when the luminance of the underlying filled contour or grid box is less than 50 and black otherwise.labels_kw (dict-like, optional) – Ignored if
labels
isFalse
. Extra keyword args for the labels. For contour plots, this is passed toclabel
. Otherwise, this is passed totext
.fmt (
format-spec
, optional) – Passed to theNorm
constructor, used to format number labels. You can also use theprecision
keyword arg.precision (
int
, optional) – Maximum number of decimal places for the number labels. Number labels are generated with theSimpleFormatter
formatter, which permits limiting the precision.label (
str
, optional) – The legend label to be used for this object. In the case of contours, this is paired with the the central artist in the artist list returned bymatplotlib.contour.ContourSet.legend_elements
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
matplotlib.axes.Axes.pcolor
.
- pcolorfast(x, y, z, **kwargs)[source]¶
Plot grid boxes quickly.
- Parameters
*args (
z
orx
,y
,z
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
z
coordinates are passed, try to infer thex
andy
coordinates from theDataFrame
indices and columns or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, y.shape[0])
and thex
coordinates arenp.arange(0, y.shape[1])
.For
pcolor
andpcolormesh
, calculate coordinate edges usingedges
oredges2d
if centers were provided. For all other methods, calculate coordinate centers if edges were provided.If the
x
ory
coordinates arepint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. If thez
coordinates arepint.Quantity
, pass the magnitude to the plotting command. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.transpose (
bool
, optional) – Whether to transpose the input data. This should be used when passing datasets with column-major dimension order(x, y)
. Otherwise row-major dimension order(y, x)
is expected.order (
{{'C', 'F'}}
, optional) – Alternative totranspose
.'C'
corresponds to the default C-cyle row-major ordering (equivalent totranspose=False
).'F'
corresponds to Fortran-style column-major ordering (equivalent totranspose=True
).globe (
bool
, optional) – Forproplot.axes.GeoAxes
only. Whether to enforce global coverage. Default isFalse
. When set toTrue
this does the following:Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole.
Makes meridional coverage “circular”, i.e. the last longitude coordinate equals the first longitude coordinate plus 360°.
When basemap is the backend, cycles 1D longitude vectors to fit within the map edges. For example, if the central longitude is 90°, the data is shifted so that it spans -90° to 270°.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.lw, linewidth, linewidths (
float
, optional) – The width of lines between grid boxes.ls, linestyle, linestyles (
str
, optional) – The style of lines between grid boxes.ec, edgecolor, edgecolors (
color-spec
, optional) – The color for lines between grid boxes.a, alpha, alphas (
float
, optional) – The opacity of the grid boxes.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.labels (
bool
, optional) – Whether to apply labels to contours and grid boxes. The text will be white when the luminance of the underlying filled contour or grid box is less than 50 and black otherwise.labels_kw (dict-like, optional) – Ignored if
labels
isFalse
. Extra keyword args for the labels. For contour plots, this is passed toclabel
. Otherwise, this is passed totext
.fmt (
format-spec
, optional) – Passed to theNorm
constructor, used to format number labels. You can also use theprecision
keyword arg.precision (
int
, optional) – Maximum number of decimal places for the number labels. Number labels are generated with theSimpleFormatter
formatter, which permits limiting the precision.label (
str
, optional) – The legend label to be used for this object. In the case of contours, this is paired with the the central artist in the artist list returned bymatplotlib.contour.ContourSet.legend_elements
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
matplotlib.axes.Axes.pcolorfast
.
- pcolormesh(x, y, z, **kwargs)[source]¶
Plot regular grid boxes.
- Parameters
*args (
z
orx
,y
,z
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
z
coordinates are passed, try to infer thex
andy
coordinates from theDataFrame
indices and columns or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, y.shape[0])
and thex
coordinates arenp.arange(0, y.shape[1])
.For
pcolor
andpcolormesh
, calculate coordinate edges usingedges
oredges2d
if centers were provided. For all other methods, calculate coordinate centers if edges were provided.If the
x
ory
coordinates arepint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. If thez
coordinates arepint.Quantity
, pass the magnitude to the plotting command. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.transpose (
bool
, optional) – Whether to transpose the input data. This should be used when passing datasets with column-major dimension order(x, y)
. Otherwise row-major dimension order(y, x)
is expected.order (
{{'C', 'F'}}
, optional) – Alternative totranspose
.'C'
corresponds to the default C-cyle row-major ordering (equivalent totranspose=False
).'F'
corresponds to Fortran-style column-major ordering (equivalent totranspose=True
).globe (
bool
, optional) – Forproplot.axes.GeoAxes
only. Whether to enforce global coverage. Default isFalse
. When set toTrue
this does the following:Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole.
Makes meridional coverage “circular”, i.e. the last longitude coordinate equals the first longitude coordinate plus 360°.
When basemap is the backend, cycles 1D longitude vectors to fit within the map edges. For example, if the central longitude is 90°, the data is shifted so that it spans -90° to 270°.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.lw, linewidth, linewidths (
float
, optional) – The width of lines between grid boxes.ls, linestyle, linestyles (
str
, optional) – The style of lines between grid boxes.ec, edgecolor, edgecolors (
color-spec
, optional) – The color for lines between grid boxes.a, alpha, alphas (
float
, optional) – The opacity of the grid boxes.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.labels (
bool
, optional) – Whether to apply labels to contours and grid boxes. The text will be white when the luminance of the underlying filled contour or grid box is less than 50 and black otherwise.labels_kw (dict-like, optional) – Ignored if
labels
isFalse
. Extra keyword args for the labels. For contour plots, this is passed toclabel
. Otherwise, this is passed totext
.fmt (
format-spec
, optional) – Passed to theNorm
constructor, used to format number labels. You can also use theprecision
keyword arg.precision (
int
, optional) – Maximum number of decimal places for the number labels. Number labels are generated with theSimpleFormatter
formatter, which permits limiting the precision.label (
str
, optional) – The legend label to be used for this object. In the case of contours, this is paired with the the central artist in the artist list returned bymatplotlib.contour.ContourSet.legend_elements
.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
matplotlib.axes.Axes.pcolormesh
.
- pie(x, explode, *, labelpad=None, labeldistance=None, **kwargs)[source]¶
Plot a pie chart.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The edge width for the patches.ls, linestyle, linestyles (
str
, optional) – The edge style for the patches.ec, edgecolor, edgecolors (
color-spec
, optional) – The edge color for the patches.fc, facecolor, facecolors, fillcolor, fillcolors (
color-spec
, optional) – The face color for the patches.a, alpha, alphas (
float
, optional) – The face opacity for the patches.edgefix (
bool
orfloat
, optional) – Whether to fix the common issue where white lines appear between adjacent patches in saved vector graphics. This can slow down figure rendering. Default isrc.edgefix
=True
. IfTrue
, a small default linewidth is used to cover up the white lines. If float, this linewidth is used.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.labelpad, labeldistance (
float
, optional) – The distance at which labels are drawn in radial coordinates.
See also
- plot(*args, **kwargs)[source]¶
Plot standard lines.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The line width.ls, linestyle, linestyles (
str
, optional) – The line style.c, color, colors (
color-spec
, optional) – The line color.a, alpha, alphas (
float
, optional) – The opacity.mean, means (
bool
, optional) – Whether to plot the means of each column for 2Dy
coordinates. Means are calculated withnumpy.nanmean
. If no other arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).median, medians (
bool
, optional) – Whether to plot the medians of each column for 2Dy
coordinates. Medians are calculated withnumpy.nanmedian
. If no other arguments arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).barstd, barstds (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. Standard deviation multiples for thin error bars with optional whiskers (i.e., caps). If scalar, then +/- that multiple is used. IfTrue
, the default standard deviation range of +/-3 is used.barpctile, barpctiles (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. As withbarstd
, but instead using percentiles for the error bars. If scalar, that percentile range is used (e.g.,90
shows the 5th to 95th percentiles). IfTrue
, the default percentile range of 0 to 100 is used.bardata (array-like, optional) – Valid only if
mean
andmedian
areFalse
. If shape is 2 x N, these are the lower and upper bounds for the thin error bars. If shape is N, these are the absolute, symmetric deviations from the central points.boxstd, boxstds, boxpctile, boxpctiles, boxdata (optional) – As with
barstd
,barpctile
, andbardata
, but for thicker error bars representing a smaller interval than the thin error bars. Ifboxstds
isTrue
, the default standard deviation range of +/-1 is used. Ifboxpctiles
isTrue
, the default percentile range of 25 to 75 is used (i.e., the interquartile range). When “boxes” and “bars” are combined, this has the effect of drawing miniature box-and-whisker plots.capsize (
float
, optional) – The cap size for thin error bars in points. Default isrc['errorbar.capsize']
=3.0
.barz, barzorder, boxz, boxzorder (
float
, optional) – The “zorder” for the thin and thick error bars. Default is2.5
.barc, barcolor, boxc, boxcolor (
color-spec
, optional) – Colors for the thin and thick error bars. Default isrc['boxplot.whiskerprops.color']
='black'
.barlw, barlinewidth, boxlw, boxlinewidth (
float
, optional) – Line widths for the thin and thick error bars, in points. The defaultsrc['boxplot.whiskerprops.linewidth']
=1.0
(bars) and four times that value (boxes).boxm, boxmarker (
bool
ormarker-spec
, optional) – Whether to draw a small marker in the middle of the box denoting the mean or median position. Ignored ifboxes
isFalse
. Default is'o'
.boxms, boxmarkersize (
size-spec
, optional) – The marker size for theboxmarker
marker in points ** 2. Default size is equal to(2 * boxlinewidth) ** 2
.boxmc, boxmarkercolor, boxmec, boxmarkeredgecolor (
color-spec
, optional) – Color, face color, and edge color for theboxmarker
marker. Default color and edge color are'w'
.shadestd, shadestds, shadepctile, shadepctiles, shadedata (optional) – As with
barstd
,barpctile
, andbardata
, but using shading to indicate the error range. Ifshadestds
isTrue
, the default standard deviation range of +/-2 is used. Ifshadepctiles
isTrue
, the default percentile range of 10 to 90 is used.fadestd, fadestds, fadepctile, fadepctiles, fadedata (optional) – As with
shadestd
,shadepctile
, andshadedata
, but for an additional, more faded, secondary shaded region. Iffadestds
isTrue
, the default standard deviation range of +/-3 is used. Iffadepctiles
isTrue
, the default percentile range of 0 to 100 is used.shadec, shadecolor, fadec, fadecolor (
color-spec
, optional) – Colors for the different shaded regions. Default is to inherit the parent color.shadez, shadezorder, fadez, fadezorder (
float
, optional) – The “zorder” for the different shaded regions. Default is1.5
.shadea, shadealpha, fadea, fadealpha (
float
, optional) – The opacity for the different shaded regions. Defaults are0.4
and0.2
.shadelw, shadelinewidth, fadelw, fadelinewidth (
float
, optional) – The edge line width for the shading patches. Default isrc['patch.linewidth']
=0.6
.shdeec, shadeedgecolor, fadeec, fadeedgecolor (
float
, optional) – The edge color for the shading patches. Default is'none'
.shadelabel, fadelabel (
bool
orstr
, optional) – Labels for the shaded regions to be used as separate legend entries. To toggle labels “on” and apply a default label, use e.g.shadelabel=True
. To apply a custom label, use e.g.shadelabel='label'
. Otherwise, the shading is drawn underneath the line and/or marker in the legend entry.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
plot
.
See also
- plotx(*args, **kwargs)[source]¶
Plot standard lines.
- Parameters
*args (
x
ory
,x
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
x
coordinates are passed, try to infer they
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, x.shape[0])
.If the
x
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths (
float
, optional) – The line width.ls, linestyle, linestyles (
str
, optional) – The line style.c, color, colors (
color-spec
, optional) – The line color.a, alpha, alphas (
float
, optional) – The opacity.mean, means (
bool
, optional) – Whether to plot the means of each column for 2Dx
coordinates. Means are calculated withnumpy.nanmean
. If no other arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).median, medians (
bool
, optional) – Whether to plot the medians of each column for 2Dx
coordinates. Medians are calculated withnumpy.nanmedian
. If no other arguments arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).barstd, barstds (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. Standard deviation multiples for thin error bars with optional whiskers (i.e., caps). If scalar, then +/- that multiple is used. IfTrue
, the default standard deviation range of +/-3 is used.barpctile, barpctiles (
bool
,float
, or2-tuple
offloat
, optional) – Valid only ifmean
ormedian
isTrue
. As withbarstd
, but instead using percentiles for the error bars. If scalar, that percentile range is used (e.g.,90
shows the 5th to 95th percentiles). IfTrue
, the default percentile range of 0 to 100 is used.bardata (array-like, optional) – Valid only if
mean
andmedian
areFalse
. If shape is 2 x N, these are the lower and upper bounds for the thin error bars. If shape is N, these are the absolute, symmetric deviations from the central points.boxstd, boxstds, boxpctile, boxpctiles, boxdata (optional) – As with
barstd
,barpctile
, andbardata
, but for thicker error bars representing a smaller interval than the thin error bars. Ifboxstds
isTrue
, the default standard deviation range of +/-1 is used. Ifboxpctiles
isTrue
, the default percentile range of 25 to 75 is used (i.e., the interquartile range). When “boxes” and “bars” are combined, this has the effect of drawing miniature box-and-whisker plots.capsize (
float
, optional) – The cap size for thin error bars in points. Default isrc['errorbar.capsize']
=3.0
.barz, barzorder, boxz, boxzorder (
float
, optional) – The “zorder” for the thin and thick error bars. Default is2.5
.barc, barcolor, boxc, boxcolor (
color-spec
, optional) – Colors for the thin and thick error bars. Default isrc['boxplot.whiskerprops.color']
='black'
.barlw, barlinewidth, boxlw, boxlinewidth (
float
, optional) – Line widths for the thin and thick error bars, in points. The defaultsrc['boxplot.whiskerprops.linewidth']
=1.0
(bars) and four times that value (boxes).boxm, boxmarker (
bool
ormarker-spec
, optional) – Whether to draw a small marker in the middle of the box denoting the mean or median position. Ignored ifboxes
isFalse
. Default is'o'
.boxms, boxmarkersize (
size-spec
, optional) – The marker size for theboxmarker
marker in points ** 2. Default size is equal to(2 * boxlinewidth) ** 2
.boxmc, boxmarkercolor, boxmec, boxmarkeredgecolor (
color-spec
, optional) – Color, face color, and edge color for theboxmarker
marker. Default color and edge color are'w'
.shadestd, shadestds, shadepctile, shadepctiles, shadedata (optional) – As with
barstd
,barpctile
, andbardata
, but using shading to indicate the error range. Ifshadestds
isTrue
, the default standard deviation range of +/-2 is used. Ifshadepctiles
isTrue
, the default percentile range of 10 to 90 is used.fadestd, fadestds, fadepctile, fadepctiles, fadedata (optional) – As with
shadestd
,shadepctile
, andshadedata
, but for an additional, more faded, secondary shaded region. Iffadestds
isTrue
, the default standard deviation range of +/-3 is used. Iffadepctiles
isTrue
, the default percentile range of 0 to 100 is used.shadec, shadecolor, fadec, fadecolor (
color-spec
, optional) – Colors for the different shaded regions. Default is to inherit the parent color.shadez, shadezorder, fadez, fadezorder (
float
, optional) – The “zorder” for the different shaded regions. Default is1.5
.shadea, shadealpha, fadea, fadealpha (
float
, optional) – The opacity for the different shaded regions. Defaults are0.4
and0.2
.shadelw, shadelinewidth, fadelw, fadelinewidth (
float
, optional) – The edge line width for the shading patches. Default isrc['patch.linewidth']
=0.6
.shdeec, shadeedgecolor, fadeec, fadeedgecolor (
float
, optional) – The edge color for the shading patches. Default is'none'
.shadelabel, fadelabel (
bool
orstr
, optional) – Labels for the shaded regions to be used as separate legend entries. To toggle labels “on” and apply a default label, use e.g.shadelabel=True
. To apply a custom label, use e.g.shadelabel='label'
. Otherwise, the shading is drawn underneath the line and/or marker in the legend entry.inbounds (
bool
, optional) – Whether to restrict the defaulty
(x
) axis limits to account for only in-bounds data when thex
(y
) axis limits have been locked. Default isrc['axes.inbounds']
=True
. See alsorc['cmap.inbounds']
.label, value (
float
orstr
, optional) – The single legend label or colorbar coordinate to be used for this plotted element. This is generally used with 1D input coordinates.labels, values (sequence of
float
or sequence ofstr
, optional) – The legend labels or colorbar coordinates used for each plotted element. Can be numeric or string, and must match the number of plotted elements. This is generally used with 2D input coordinates.colorbar (
bool
,int
, orstr
, optional) – If notNone
, this is a location specifying where to draw an inner or outer colorbar from the resulting object(s). IfTrue
, the defaultrc['colorbar.loc']
='right'
is used. If the same location is used in successive plotting calls, object(s) will be added to the existing colorbar in that location (valid for colorbars built from lists of artists). Valid locations are shown in incolorbar
.colorbar_kw (dict-like, optional) – Extra keyword args for the call to
colorbar
.legend (
bool
,int
, orstr
, optional) – Location specifying where to draw an inner or outer legend from the resulting object(s). IfTrue
, the defaultrc['legend.loc']
='best'
is used. If the same location is used in successive plotting calls, object(s) will be added to existing legend in that location. Valid locations are shown inlegend
.legend_kw (dict-like, optional) – Extra keyword args for the call to
legend
.**kwargs – Passed to
plot
.
See also
- quiver(x, y, u, v, c, **kwargs)[source]¶
Plot quiver arrows.
- Parameters
*args (
u
,v
orx
,y
,u
,v
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
u
andv
coordinates are passed, try to infer thex
andy
coordinates from theDataFrame
indices and columns or theDataArray
coordinates. Otherwise, they
coordinates arenp.arange(0, y.shape[0])
and thex
coordinates arenp.arange(0, y.shape[1])
.For
pcolor
andpcolormesh
, calculate coordinate edges usingedges
oredges2d
if centers were provided. For all other methods, calculate coordinate centers if edges were provided.If the
x
ory
coordinates arepint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. If theu
andv
coordinates arepint.Quantity
, pass the magnitude to the plotting command. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
c, color, colors (array-like or
color-spec
, optional) – The colors of the quiver arrows passed as either a keyword argument or a fifth positional argument. This can be a single color or a color array to be scaled bycmap
andnorm
.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.transpose (
bool
, optional) – Whether to transpose the input data. This should be used when passing datasets with column-major dimension order(x, y)
. Otherwise row-major dimension order(y, x)
is expected.order (
{{'C', 'F'}}
, optional) – Alternative totranspose
.'C'
corresponds to the default C-cyle row-major ordering (equivalent totranspose=False
).'F'
corresponds to Fortran-style column-major ordering (equivalent totranspose=True
).globe (
bool
, optional) – Forproplot.axes.GeoAxes
only. Whether to enforce global coverage. Default isFalse
. When set toTrue
this does the following:Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole.
Makes meridional coverage “circular”, i.e. the last longitude coordinate equals the first longitude coordinate plus 360°.
When basemap is the backend, cycles 1D longitude vectors to fit within the map edges. For example, if the central longitude is 90°, the data is shifted so that it spans -90° to 270°.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.**kwargs – Passed to
matplotlib.axes.Axes.quiver
- scatter(*args, **kwargs)[source]¶
Plot markers with flexible keyword arguments.
- Parameters
*args (
y
orx
,y
) – The data passed as positional or keyword arguments. Interpreted as follows:If only
y
coordinates are passed, try to infer thex
coordinates from theSeries
orDataFrame
indices or theDataArray
coordinates. Otherwise, thex
coordinates arenp.arange(0, y.shape[0])
.If the
y
coordinates are a 2D array, plot each column of data in succession (except where each column of data represents a statistical distribution, as withboxplot
,violinplot
, or when usingmeans=True
ormedians=True
).If any arguments are
pint.Quantity
, auto-add the pint unit registry to matplotlib’s unit registry usingsetup_matplotlib
. Apint.Quantity
embedded in anxarray.DataArray
is also supported.
s, size, ms, markersize (
float
or sequence offloat
, optional) – The marker size(s). If this is an array matching the shape ofx
andy
, the units are scaled bysmin
andsmax
.c, color, colors, mc, markercolor, markercolors, fc, facecolor, facecolors (array-like or
color-spec
, optional) – The marker color(s). If this is an array matching the shape ofx
andy
, the colors are generated usingcmap
,norm
,vmin
, andvmax
.smin, smax (
float
, optional) – The minimum and maximum marker size in unitspoints**2
used to scales
. If not provided, the marker sizes are equivalent to the values ins
.vmin, vmax (
float
, optional) – Used to determine level locations iflevels
orvalues
is an integer. Actual levels may not fall exactly onvmin
andvmax
, but the minimum level will be no smaller thanvmin
and the maximum level will be no larger thanvmax
. Ifvmin
orvmax
are not provided, the minimum and maximum data values are used.data (dict-like, optional) – A dict-like dataset container (e.g.,
DataFrame
orDataArray
). If passed, positional arguments can optionally be stringdata
keys and the arrays used for plotting are retrieved withdata[key]
. This is a native matplotlib feature.autoformat (
bool
, optional) – Whether thex
axis labels,y
axis labels, axis formatters, axes titles, legend titles, and colorbar labels are automatically configured when aSeries
,DataFrame
,DataArray
, orQuantity
is passed to the plotting command. Default isrc.autoformat
=True
.
- Other Parameters
cmap (
colormap-spec
, optional) – The colormap specifer, passed to theColormap
constructor function.c, color, colors (
color-spec
or sequence ofcolor-spec
, optional) – The color(s) used to create aDiscreteColormap
. If not passed,cmap
is used.norm (
norm-spec
, optional) – The continuous colormap normalizer, passed to theNorm
constructor function. Ifdiscrete
isTrue
this is also used to normalize values passed toDiscreteNorm
before colors is selected.discrete (
bool
, optional) – IfFalse
, thenDiscreteNorm
is not applied to the colormap. Instead, for non-contour plots, the number of levels will be roughly controlled byrc['cmap.lut']
. This has a similar effect to usinglevels=large_number
but it may improve rendering speed. Default isFalse
forimshow
,matshow
,spy
,hexbin
,hist2d
, andheatmap
plots, butTrue
otherwise.sequential, diverging, cyclic, qualitative (
bool
, optional) – Boolean arguments used ifcmap
is not passed. Set these toTrue
to use the defaultrc['cmap.sequential']
,rc['cmap.diverging']
,rc['cmap.cyclic']
, andrc['cmap.qualitative']
colormaps. Thediverging
option also appliesDivergingNorm
as the default continuous normalizer.extend (
{{'neither', 'min', 'max', 'both'}}
, optional) – Whether to assign unique colors to out-of-bounds data and draw colorbar “extensions” when a colorbar is drawn.N – Shorthand for
levels
.levels (
int
or sequence offloat
, optional) – The number of level edges or a sequence of level edges. If the former,locator
is used to generate this many level edges at “nice” intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work withpcolor
plots, notcontour
plots). Default isrc['cmap.levels']
=11
.values (
int
or sequence offloat
, optional) – The number of level centers or a sequence of level centers. If the former,locator
is used to generate this many level centers at “nice” intervals. If the latter, levels are inferred usingedges
. This will override anylevels
input.robust (
bool
,float
, or2-tuple
, optional) – IfTrue
andvmin
orvmax
were not provided, they are determined from the 2nd and 98th data percentiles rather than the minimum and maximum. If float, this percentile range is used (for example,90
corresponds to the 5th to 95th percentiles). If 2-tuple of float, these specific percentiles should be used. This feature is useful when your data has large outliers. Default isrc['cmap.robust']
=False
.inbounds (
bool
, optional) – IfTrue
andvmin
orvmax
were not provided, when axis limits have been explicitly restricted withset_xlim
orset_ylim
, out-of-bounds data is ignored. Default isrc['cmap.inbounds']
=True
. See alsorc['axes.inbounds']
.locator (
locator-spec
, optional) – The locator used to determine level locations iflevels
orvalues
is an integer. Passed to theLocator
constructor. Default isMaxNLocator
withlevels
integer levels.symmetric (
bool
, optional) – IfTrue
, automatically generated levels are symmetric about zero. Default is alwaysFalse
.positive (
bool
, optional) – IfTrue
, automatically generated levels are positive with a minimum at zero. Default is alwaysFalse
.negative (
bool
, optional) – IfTrue
, automatically generated levels are negative with a maximum at zero. Default is alwaysFalse
.nozero (
bool
, optional) – IfTrue
,0
is removed from the level list. This is mainly useful for single-colorcontour
plots.cycle (
cycle-spec
, optional) – The cycle specifer, passed to theCycle
constructor. If the returned cycler is unchanged from the current cycler, the axes cycler will not be reset to its first position. To disable property cycling and just use black for the default color, usecycle=False
,cycle='none'
, orcycle=()
(analogous to disabling ticks with e.g.xformatter='none'
). To restore the default property cycler, usecycle=True
.lw, linewidth, linewidths, mew, markeredgewidth, markeredgewidths (
float
or sequence, optional) – The marker edge width(s).edgecolors, markeredgecolor, markeredgecolors (
color-spec
or sequence, optional) – The marker edge color(s).mean, means (
bool
, optional) – Whether to plot the means of each column for 2Dy
coordinates. Means are calculated withnumpy.nanmean
. If no other arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).median, medians (
bool
, optional) – Whether to plot the medians of each column for 2Dy
coordinates. Medians are calculated withnumpy.nanmedian
. If no other arguments arguments are specified, this also setsbarstd=True
(andboxstd=True
for violin plots).barstd, barstds (
bool
,