The basics

Creating figures

ProPlot works by creating a proplot.figure.Figure subclass of matplotlib.figure.Figure, an proplot.axes.Axes subclass of matplotlib.axes.Axes, and determining subplot locations using a proplot.gridspec.GridSpec subclass of matplotlib.gridspec.GridSpec (for more on gridspecs, see this matplotlib tutorial).

To make plots with these classes, you must start with the figure or subplots commands. These are modeled after the pyplot commands of the same name. As in pyplot, subplots creates a figure and a grid of subplots all at once, while figure creates an empty figure that can be subsequently filled with subplots. A minimal example with just one subplot is shown below.


ProPlot changes the default rc['figure.facecolor'] so that the figure backgrounds shown by the matplotlib backend are light gray (the rc['savefig.facecolor'] applied to saved figures is still white). This can be helpful when designing figures. ProPlot also controls the appearence of figures in Jupyter notebooks using the new rc.inlinefmt setting, which is passed to config_inline_backend on import. This imposes a higher-quality default “inline” format and disables the backend-specific settings InlineBackend.rc and InlineBackend.print_figure_kwargs, ensuring that the figures you save look like the figures displayed by the backend.

ProPlot also changes the default rc['savefig.format'] from PNG to PDF for the following reasons:

  1. Vector graphic formats are infinitely scalable.

  2. Vector graphic formats are preferred by academic journals.

  3. Nearly all academic journals accept figures in the PDF format alongside the EPS format.

  4. The EPS format is outdated and does not support transparent graphic elements.

In case you do need a raster format like PNG, ProPlot increases the default rc['savefig.dpi'] to 1000 dots per inch, which is recommended by most journals as the minimum resolution for rasterized figures containing lines and text. See the configuration section for how to change these settings.

# Single subplot
import numpy as np
import proplot as pplt
state = np.random.RandomState(51423)
data = 2 * (state.rand(100, 5) - 0.5).cumsum(axis=0)
fig = pplt.figure()
ax = fig.subplot()
ax.plot(data, lw=2)
ax.format(suptitle='Single subplot', xlabel='x axis', ylabel='y axis')

Creating subplots

Similar to matplotlib, subplots can be added to figures one-by-one or all at once. To add subplots all at once, use the add_subplots or subplots commands.

  • With no arguments, add_subplots returns a figure with a single subplot.

  • With ncols or nrows, add_subplots returns a figure with a simple grid of subplots.

  • With array, add_subplots returns a figure with an arbitrarily complex grid of subplots. array is a 2D array representing a “picture” of the subplot layout, where each unique integer indicates a GridSpec slot that is occupied by the corresponding subplot and 0 indicates an empty space.

To add subplots one-by-one, use the proplot.figure.Figure.add_subplot or proplot.figure.Figure.subplot commands.

  • With no arguments, add_subplot returns a subplot generated from a 1-column, 1-row GridSpec.

  • With integer arguments, add_subplot returns a subplot matching the corresponding GridSpec geometry, as in matplotlib. Note that unlike matplotlib, the geometry must be compatible with the geometry implied by previous add_subplot calls.

  • With a SubplotSpec generated by indexing a proplot.gridspec.GridSpec, add_subplot returns a subplot at the corresponding location. Note that unlike matplotlib, only one gridspec instance can be used with each figure.

As in matplotlib, to save figures, use savefig (or its shorthand Tildes in the filename are expanded with os.path.expanduser. In the following examples, we add subplots to figures with a variety of methods and then save the results to the home directory.


ProPlot employs automatic axis sharing by default. This lets subplots in the same row or column share the same axis limits, scales, ticks, and labels. This is often convenient, but may be annoying for some users. To keep this feature turned off, simply change the default settings with e.g. pplt.rc.update(share=False, span=False). See the axis sharing section for details.

# Simple subplot grid
import numpy as np
import proplot as pplt
state = np.random.RandomState(51423)
data = 2 * (state.rand(100, 5) - 0.5).cumsum(axis=0)
fig = pplt.figure()
ax = fig.subplot(121)
ax.plot(data, lw=2)
ax = fig.subplot(122)
    suptitle='Simple subplot grid', title='Title',
    xlabel='x axis', ylabel='y axis'
# Complex grid
import numpy as np
import proplot as pplt
state = np.random.RandomState(51423)
data = 2 * (state.rand(100, 5) - 0.5).cumsum(axis=0)
array = [  # the "picture" (0 == nothing, 1 == subplot A, 2 == subplot B, etc.)
    [1, 1, 2, 2],
    [0, 3, 3, 0],
fig = pplt.figure(refwidth=1.8)
axs = fig.subplots(array)
    abc=True, abcloc='ul', suptitle='Complex subplot grid',
    xlabel='xlabel', ylabel='ylabel'
axs[2].plot(data, lw=2)'~/example2.png')
# Really complex grid
import numpy as np
import proplot as pplt
state = np.random.RandomState(51423)
data = 2 * (state.rand(100, 5) - 0.5).cumsum(axis=0)
array = [  # the "picture" (1 == subplot A, 2 == subplot B, etc.)
    [1, 1, 2],
    [1, 1, 6],
    [3, 4, 4],
    [3, 5, 5],
fig, axs = pplt.subplots(array, figwidth=5, span=False)
    suptitle='Really complex subplot grid',
    xlabel='xlabel', ylabel='ylabel', abc=True
axs[0].plot(data, lw=2)'~/example3.png')
# Using a GridSpec
import numpy as np
import proplot as pplt
state = np.random.RandomState(51423)
data = 2 * (state.rand(100, 5) - 0.5).cumsum(axis=0)
gs = pplt.GridSpec(nrows=2, ncols=2, pad=1)
fig = pplt.figure(span=False, refwidth=2)
ax = fig.subplot(gs[:, 0])
ax.plot(data, lw=2)
ax = fig.subplot(gs[0, 1])
ax = fig.subplot(gs[1, 1])
    suptitle='Subplot grid with a GridSpec',
    xlabel='xlabel', ylabel='ylabel', abc=True

Plotting stuff

Matplotlib has two different interfaces: an object-oriented interface and a MATLAB-style pyplot interface (which uses the object-oriented interface internally). Plotting with ProPlot is just like plotting with matplotlib’s object-oriented interface. ProPlot builds upon the proplot.axes.Axes base class with a proplot.axes.PlotAxes subclass that adds new plotting commands and new features to existing commands. These additions do not change the usage or syntax of existing commands, which means a shallow learning curve for the average matplotlib user.

In the below example, we create a 4-panel figure with the familiar matplotlib commands plot, scatter, pcolormesh, and contourf. See the 1d plotting and 2d plotting sections for details on the features added by ProPlot.

import proplot as pplt
import numpy as np

# Sample data
N = 20
state = np.random.RandomState(51423)
data = N + (state.rand(N, N) - 0.55).cumsum(axis=0).cumsum(axis=1)

# Example plots
cycle = pplt.Cycle('greys', left=0.2, N=5)
fig, axs = pplt.subplots(ncols=2, nrows=2, figwidth=5, share=False)
axs[0].plot(data[:, :5], linewidth=2, linestyle='--', cycle=cycle)
axs[1].scatter(data[:, :5], marker='x', cycle=cycle)
axs[2].pcolormesh(data, cmap='greys')
m = axs[3].contourf(data, cmap='greys')
    abc='a.', titleloc='l', title='Title',
    xlabel='xlabel', ylabel='ylabel', suptitle='Quick plotting demo'
fig.colorbar(m, loc='b', label='label')
<matplotlib.colorbar.Colorbar at 0x7f072ed33190>

Formatting stuff

Every Axes returned by subplots has a format method. This is your one-stop-shop for changing axes settings. Keyword arguments passed to format are interpreted as follows:

  1. Any keyword matching the name of an rc setting is used to update the axes. If the name has “dots”, you can omit them (e.g., titleloc='left' changes the rc['title.loc'] property). See the configuration section for details.

  2. Valid keywords arguments are passed to proplot.axes.CartesianAxes.format, proplot.axes.PolarAxes.format, or proplot.axes.GeoAxes.format. These change settings that are specific to the axes type. For example:

    • To change the x axis bounds on a CartesianAxes, use e.g. xlim=(0, 5).

    • To change the radial bounds on a PolarAxes, use e.g. rlim=(0, 10).

    • To change the meridional bounds on a GeoAxes, use e.g. lonlim=(-90, 0).

  3. Remaining keyword arguments are passed to the base proplot.axes.Axes.format method. Axes is the base class for all other axes classes. This changes things that are the same for all axes types, like titles and a-b-c subplot labels (e.g., title='Title').

The format methods let you use simple shorthands for changing all kinds of settings at once, instead of one-liner setter methods like ax.set_title() and ax.set_xlabel(). They are also integrated with the Locator, Formatter, and Scale constructor functions. You can also call format for several subplots at once using proplot.figure.Figure.format or proplot.figure.SubplotGrid.format (see below).

The below example shows the many different keyword arguments accepted by format, and demonstrates how format can be used to succinctly and efficiently customize your plots.

import proplot as pplt
import numpy as np
fig, axs = pplt.subplots(ncols=2, nrows=2, refwidth=2, share=False, tight=True)
state = np.random.RandomState(51423)
N = 60
x = np.linspace(1, 10, N)
y = (state.rand(N, 5) - 0.5).cumsum(axis=0)
axs[0].plot(x, y, linewidth=1.5)
    suptitle='Format command demo',
    abc='A.', abcloc='ul',
    title='Main', ltitle='Left', rtitle='Right',  # different titles
    ultitle='Title 1', urtitle='Title 2', lltitle='Title 3', lrtitle='Title 4',
    toplabels=('Column 1', 'Column 2'),
    leftlabels=('Row 1', 'Row 2'),
    xlabel='xaxis', ylabel='yaxis',
    xlim=(1, 10), xticks=1,
    ylim=(-3, 3), yticks=pplt.arange(-3, 3),
    yticklabels=('a', 'bb', 'c', 'dd', 'e', 'ff', 'g'),
    ytickloc='both', yticklabelloc='both',
    xtickdir='inout', xtickminor=False, ygridminor=True,

Subplot grids

In matplotlib, subplots returns a 2D ndarray for figures with more than one column and row, a 1D ndarray for single-column or row figures, or an Axes for single-subplot figures. In ProPlot, subplots returns a SubplotGrid that unifies these three possible return values:

  • SubplotGrid permits array-like 2D indexing, e.g. axs[1, 0]. Indexing the SubplotGrid is similar to indexing a GridSpec. The result is a SubplotGrid of subplots that occupy the indexed GridSpec slot(s).

  • SubplotGrid permits list-like 1D indexing, e.g. axs[0]. The default order can be switched from row-major to column-major by passing order='F' to subplots.

  • SubplotGrid behaves like a scalar when it is singleton. That is, if you make a single subplot with fig, ax = pplt.subplots(), ax[0].method(...) is equivalent to ax.method(...).

If you added subplots one-by-one with subplot or add_subplot, a SubplotGrid containing the numbered subplots is available via the proplot.figure.Figure.subplotgrid property. SubplotGrid is especially useful because it lets you call format, colorbar, legend, panel, inset, and the various twin axis commands simultaneously for all subplots in the grid. In the below example, we use format command on the grid returned by subplots to format several subplots all at once.

import proplot as pplt
import numpy as np
state = np.random.RandomState(51423)

# Selected subplots in a simple grid
fig, axs = pplt.subplots(ncols=4, nrows=4, refwidth=1.2, span=True)
axs.format(xlabel='xlabel', ylabel='ylabel', suptitle='SubplotGrid demo')
axs.format(grid=False, xlim=(0, 50), ylim=(-4, 4))
axs[:, 0].format(facecolor='blush', edgecolor='gray7', linewidth=1)  # eauivalent
axs[:, 0].format(fc='blush', ec='gray7', lw=1)
axs[0, :].format(fc='sky blue', ec='gray7', lw=1)
axs[0].format(ec='black', fc='gray5', lw=1.4)
axs[1:, 1:].format(fc='gray1')
for ax in axs[1:, 1:]:
    ax.plot((state.rand(50, 5) - 0.5).cumsum(axis=0), cycle='Grays', lw=2)

# Selected subplots in a complex grid
fig = pplt.figure(refwidth=2, span=False)
axs = fig.subplots([[1, 1, 2], [3, 4, 2], [3, 4, 5]], hratios=[2, 1, 1])
axs.format(xlabel='xlabel', ylabel='ylabel', suptitle='SubplotGrid demo')
axs[0].format(ec='black', fc='gray5', lw=1.4)
axs[1, 1:].format(fc='blush')
axs[1, :1].format(fc='sky blue')
axs[-1, -1].format(fc='gray2', grid=False)

Settings and styles

A dictionary-like object named rc is created when you import ProPlot. rc is similar to the matplotlib rcParams dictionary, but can be used to change both `matplotlib settings <ug_rcmatplotlib_>`_ and ProPlot settings. The matplotlib-specific settings are stored in rc_matplotlib (our name for matplotlib.rcParams) and the ProPlot-specific settings are stored in rc_proplot. ProPlot also includes a setting that can be used to switch between matplotlib stylesheets. See the configuration section for details.

To modify a setting for just one subplot or figure, you can pass it to proplot.axes.Axes.format or proplot.figure.Figure.format. To temporarily modify setting(s) for a block of code, use context. To modify setting(s) for the entire python session, just assign it to the rc dictionary or use update. To reset everything to the default state, use reset. See the below example.

import proplot as pplt
import numpy as np

# Update global settings in several different ways
pplt.rc.cycle = 'colorblind'
pplt.rc.metacolor = 'gray6'
pplt.rc.update({'fontname': 'Source Sans Pro', 'fontsize': 11})
pplt.rc['figure.facecolor'] = 'gray3'
pplt.rc.axesfacecolor = 'gray4'
#  # save the current settings to ~/.proplotrc

# Apply settings to figure with context()
with pplt.rc.context({'suptitle.size': 13}, toplabelcolor='gray6', metawidth=1.5):
    fig = pplt.figure(figwidth=6, sharey='limits', span=False)
    axs = fig.subplots(ncols=2)

# Plot lines
N, M = 100, 6
state = np.random.RandomState(51423)
values = np.arange(1, M + 1)
for i, ax in enumerate(axs):
    data = np.cumsum(state.rand(N, M) - 0.5, axis=0)
    lines = ax.plot(data, linewidth=3, cycle='Grays')

# Apply settings to axes with format()
    grid=False, xlabel='xlabel', ylabel='ylabel',
    toplabels=('Column 1', 'Column 2'),
    suptitle='Rc settings demo',
    abc='[A]', abcloc='l',
    title='Title', titleloc='r', titlecolor='gray7'
ay = axs[-1].twinx()
ay.format(ycolor='red', linewidth=1.5, ylabel='secondary axis')
ay.plot((state.rand(100) - 0.2).cumsum(), color='r', lw=3)

# Reset persistent modifications from head of cell
import proplot as pplt
import numpy as np
# = 'style'  # set the style everywhere

# Sample data
state = np.random.RandomState(51423)
data = state.rand(10, 5)

# Set up figure
fig, axs = pplt.subplots(ncols=2, nrows=2, span=False, share=False)
axs.format(suptitle='Stylesheets demo')
styles = ('ggplot', 'seaborn', '538', 'bmh')

# Apply different styles to different axes with format()
for ax, style in zip(axs, styles):
    ax.format(style=style, xlabel='xlabel', ylabel='ylabel', title=style)
    ax.plot(data, linewidth=3)